

JDF Workflow

Thomas Hoffmann-Walbeck

Sebastian Riegel

translated by Joe Dobrowits

JDF Workflow

A Guide to Automation in the Graphic Communications Industry

Printing Industries Press

Pittsburgh

Copyright 2009

Thomas Hoffmann-Walbeck and Sebastian Riegel, jdf@hdm-stuttgart.de.

This edition published by arrangement with Hoffmann-Walbeck and Riegel

Reprinted in 2011 by Printing Industries Press

in conjunction with CIP4 Organization

All Rights Reserved.

Library of Congress Catalog Card No. 2011932629

International Standard Book Number: 978-0-88362-718-1

Printed in the United States of America

Printing Industries of America Catalog No. 1791

First Printing, XXX 2011

Reproduction in any form by any means without specific written permission is

prohibited.

Individual trademarks are the property of their respective owners. Product names are

mentioned in this book as a matter of information only and do not imply endorsement

by Printing Industries of America.

Printing Industries Press books are widely used by companies, associations, and schools

for training, marketing, and resale. Quantity discounts are available by contacting the

Printing Industries of America Member Central department at the number below.

Printing Industries Press

Printing Industries of America

200 Deer Run Road

Sewickley, PA 15143

Phone: 412-741-6860

Toll-Free: 800-910-4283 x770

Fax: 412-741-2311

Email: membercentral@printing.org

Online: www.printing.org

Foreword

Foreword

Why a book about JDF workflow? Above all, why JDF? Isn’t it sim-

ply a data format that, behind the scenes, ensures that machines in

a print shop receive the correct data? When using the phone, who

cares about how the signaling protocols run in the background?

And can’t you also drive your car without knowing the technical

details of the piston profiles?

In fact, these arguments are not to be rejected out of hand. Nev-

ertheless, we believe that the preoccupation with JDF can be in-

teresting for media specialists because Job Definition Format (JDF)

describes most of the processes in the print industry and represents

an important model for the graphic industry.

The technology is still fairly new and the service does not function

in a self-explanatory manner like a telephone or a car. To install,

set up test, and debug a JDF workflow requires some basic knowl-

edge of the format.

But we do not intend to go too far into the depths of the data for-

mat. More important, in fact, is the workflow itself which can be

built with the help of JDF. Therefore we will describe the process

in the first several chapters completely independently from JDF, in

order to subsequently explain the modeling in JDF. We have tried

to separate the two parts. So if you want, you can apply yourself

to one of the two things apart from each other.

The intended audience for this book is apprentices in the graphic

communications industry, students of printing and media technol-

ogy, practitioners in print companies or manufacturers, and finally

also computer scientists.

In this book we presuppose no knowledge of the JDF format but

do expect that the basic production processes for manufacturing

a print product are known. However, in the glossary we have de-

fined some of these processes to facilitate the understanding of

the reader if necessary.

Naturally, we could not describe all of the processing steps for

producing a graphic product in microscopic detail in such a book.

There are special textbooks about image processing, computer-to-

plate, offset printing, etc. We can only go into technical details in

part with examples. On the other hand, we absolutely wish to do

this and we are not satisfied to simply philosophize over the gen-

eral purpose of process networking.

Foreword

Another warning: we want to illuminate the basic principles of

JDF workflows and not give tips and tricks for various workflow

products. We will not even allude to the workflow systems of var-

ious manufacturers—that is believed to be the responsibility of the

trade magazines.

We have taught prepress workflow for many years at the Univer-

sity of the Media in Stuttgart, both theoretically in lectures and in

practice as exercises. Here we have determined that there is gen-

erally little suitable literature in the area of workflow. On the one

hand, there is the more than 1,000-page specification for the JDF

format [13], which is primarily aimed at computer scientists and is

rather daunting; on the other hand, there are published descrip-

tions of the economic benefits of JDF automation (for example in

[32] or [33]).

Of course, there are comprehensive handbooks about the use of

their systems from the manufacturers of JDF workflow solutions.

Vendor-independent books about “workflow” are quite rare (see,

for example, [16]), and most are limited to a portion of production

(for example, see [10] and [22]).

We strongly believe that with the JDF workflow a new production

form has risen, and is still being developed, in the graphic com-

munications industry—which is fascinating for some and frighten-

ing for others. And so in any case we believe that it is worth close

examination of this issue. There is still always the quote from the

Klimsch’s Year Book from 1924/25 (page 109).

Unstoppable and ruthless economic development goes their way.

The old is crumbling, and new life bursts out of the ruins. A look

back shows the almost sudden development that has taken over

the last decade, the graphic art

In the introduction (Chapter 1) we discuss the general characteris-

tics and expectations of a JDF workflow. The development which

has led to this format is also briefly discussed. Anyone who has

traced professional articles on the subject of JDF for a length of

time can safely skip this chapter.

In the second chapter we describe the three scenarios of print pro-

duction. All three print companies are state of the art, but only

two employ JDF technology. We wish to clarify for the readers the

differences that may accompany the inclusion of JDF. In addition,

concepts such as workflow, job tickets, etc., are defined in Sec-

tion 4 of this chapter, and in Section 5 general characteristics of

workflows are presented.

Foreword

The process-resource model, or rather the producer-consumer

model, is the topic of Chapter 3. Here the basic features of this

view are demonstrated with examples from the areas of order man-

agement, prepress, printing, and finishing.

In Chapter 5 a short introduction to XML, the Extensible Markup

Language, is given, as it is necessary for the understanding of JDF

code. Following, in Chapter 6, the most important JDF structures

are presented.

Chapter 7 deals with the Job Messaging Format (JMF), the “SMS

of the Print Industry.” It is a data format and a protocol for com-

munication in a JDF environment. Both form the basis for Chap-

ters 8–12, which cover workflow details and their JDF equivalents

from the areas of order management, prepress, printing, finishing,

and package printing.

In Chapter 13 two possible JDF projects are discussed which might

be of interest to the reader. The first section goes over the imple-

mentation of JDF workflows in print shops. The second section

gives a short introduction to JAVA programming of JDF applica-

tions. It is only intended to provide initial guidance, such as on how

to integrate libraries.

At the end of some chapters we have added exercises which should

help you to better understand the material.

The authors wish to heartily thank the following people for their

valuable support in writing this book:

• Mr. Dieter Adam (MB Bäuerle)

• Mr. Jan Breithold (HELL Gravure Systems)

• Mr. Ruben Cagnie (EskoArtwork)

• Ms. Anja Dannhorn (Fujifilm)

• Mr. Gottfried Grasl (Heidelberger Druckmaschinen)

• Mr. Stefan Kopec (Druckerei Mack)

• Ms. Ulrike Kurz (MBO)

• Mr. Bernd Laubengaier (Druckerei Laubengaier)

• Ms. Prof. Dr. Christa Neß (Hochschule der Medien)

• Mr. Lieven Plettnick (EskoArtwork)

• Ms. Ulrike Seethaler (Heidelberger Druckmaschinen)

• Mr. Matthias Siegel (MB Bäuerle)

• Mr. Klaus Stocklossa (MBO)

Foreword

We would be very pleased to see suggestions, corrections, com-

ments or additions to this book.

Thomas Hoffmann-Walbeck

Sebastian Riegel

c/o Hochschule der Medien

Nobelstraße 10

D-70569 Stuttgart

0711-89232128 or 0711-89232115

jdf@hdm-stuttgart.de

Editor’s Note: Please note that the bracketed numbers found
throughout the text refer to the Bibliography listings found on
pages xxx–xxx.

Contents

Contents

Foreword

1 Introduction 1
1.1 The Development of JDF 1
1.2 Key Features of Job Definition Format 3
1.3 Implementation of JDF Workflows 6

2 Workflow Basics 9
2.1 Company without a JDF Workflow 9
2.2 Company with a Partial JDF Integration 11
2.3 Company with Extensive JDF/JMF Networking 12
2.4 Definitions 13
2.5 Workflow Classification 16
2.6 Properties of WMS and Job Ticket Formats 20

3 Print Workflow Models 25
3.1 Order Management 27
3.2 Output Workflow in Prepress 28
3.3 The Sheetfed Offset Process 34
3.4 Example of Postpress Model 37

4 History of Metadata and Its Application 39
4.1 Metadata for Photos and Documents 39
4.2 Print Production Format (PPF) 45
4.3 Portable Job Ticket Format (PJTF) 50

5 A Brief Introduction to XML 55
5.1 Construction of an XML Document 55
5.2 XML Name Space 57
5.3 Resource Description Framework (RDF) and XMP 59
5.4 Commerce Extensible Markup Language (cXML) 61

6 Introduction to JDF 63

6.1 Construction of a JDF Document 63
6.2 Examples of JDF Nodes 67
6.3 Partitioned Resources 72
6.4 GrayBoxes and Combined Processes 74
6.5 JDF Workflow Architecture 77
6.6 Separating and Merging 80
6.7 Interoperability Conformance Specifications (ICS) 83

Contents

7 Job Messaging Format (JMF) 89
7.1 Communications Models 89
7.2 JMF Families 91
7.3 JMF ICS 98

8 Order Management Systems 101

8.1 Basic Functionality of an OMS 102
8.2 JDF Interfaces to Production 104
8.3 MIS ICS Papers 116
8.4 PrintTalk/JDF Interface to Customers 118

9 Prepress 123
9.1 Interfaces between MIS and Prepress 124
9.2 Assembly 130
9.3 Trapping 135
9.4 RIPing and Platemaking 137
9.5 Proof and Press Approvals 140

10 Press 145

10.1 Conventional Printing 146
10.2 Digital Print 160

11 Postpress 167

11.1 Guillotine Cutter 169
11.2 Folder 171
11.3 Saddle Stitcher 174

12 Packaging Printing 179

12.1 Die Design, Sheet Optimization, and Die Manufacturing 182
12.2 Punching and Folded-Carton Gluing 185
12.3 Barcode 189

13 JDF/JMF Projects 193
13.1 Workflow Implementation with Modules from a Single Vendor 195
13.2 Workflow Implementation with Modules
 from Multiple Vendors 197
13.3 JDF/JMF Programming 200

Bibliography 205
Glossary 207
Abbreviations 210

Index 212

1Chapter 1

1 Introduction

A “JDF workflow“ is generally understood in the graphic commu-

nications industry to be an integrated process based on the twin,

open-standard data formats of Job Definition Format (JDF) and

Job Messaging Format (JMF). The stated goal is the automation

of process steps through the integration of disparate applications

and systems. The basic underlying idea is therefore quite simple:

to summarize information about a print job and pass it on to the

stakeholders who require it. Imagine, for instance, all of the places

where sheet size must be entered: estimating, digital prepress, at

the press controller, at the guillotine cutter... Obviously, costs can

be reduced here.

However, a JDF workflow also has other goals, as we will see,

namely, error reduction, time savings, and cost transparency.

1.1 The Development of JDF

Initiated by Heidelberger Druckmaschinen, manroland, Agfa, and

Adobe, the data formats were announced shortly before DRUPA

2000 and then presented at DRUPA. In September of the same year,

the development of these formats was handed over to the Inter-
national Cooperation for the Integration of Processes in Pre-

press, Press, and Postpress (CIP4). The association currently has

more than three hundred members, mostly suppliers, software us-

ers, consultants, and institutes of the graphic arts industries.

The CIP4 Organization emerged from the existing CIP3 consortium,

founded in 1995. CIP3 is an abbreviation for International Co-

operation for Integration of Prepress, Press, and Postpress.

Print Production Format (PPF), which was published by CIP3, was

also acquired by CIP4. CIP4 is headquartered in Zurich, Switzerland.

PPF and JDF/JMF are interface formats for networking solutions.

Both formats serve the principle of the industrialized produc-

tion of press products, which is in contrast to the former, more

handwork-oriented production methods seen in the past. In this

context, the commonly dropped buzzword is computer inte-

grated manufacturing (CIM).

PPF, which is widely known in the industry as “CIP3 format,” makes

the transmission of technical data, mostly from prepress to the

pressroom, or input to further processing possible (Figure 1.2). The

most widely used application is the storage of a preview image

(Preview) of a signature in a PPF file, a task completed by the RIP

Figure 1.1

History of JDF; CIP4 logo

1993 Concept

development of PPF

1995 Public presentation

of PPF Version 1.0;

Foundation of the

CIP3 Organization

1996 PPF Version 2.0

1998 PPF Version 3.0

2000 Public presentation

of JDF; Foundation of

the CIP4 consortium

2001 JDF Version 1.0

2002 JDF Version 1.1

2004 JDF Version 1.3

2008 JDF Version 1.4

®

2 Introduction

which precedes the plate burner. This preview image is then trans-

ferred to software which can calculate the resulting ink zone set-

tings for an offset printing press (Figure 1.3). Another example of

the PPF workflow is the passing of information on the cutting and

folding of a sheet from the digital layout to finishing. The corre-

sponding marks are set, and subsequently the information is writ-

ten in a suitable manner in the PPF file. Software capable of inter-

preting PPF can then generate a cutting or folding program for a

guillotine cutter and folding machine, respectively, in a proprietary

data format. So in PPF no machine control data is passed on; in-

stead abstract information is passed from which the machine con-

trol data can be generated.

In summary, the PPF workflow offers the following advantages over

a production mode without PPF integration:

• Technical data, especially for machine settings, may be shared

across departmental boundaries.

• Entering data (such as sheet size) in multiple areas can be

eliminated.

• Certain process steps could be removed through the handoff

of the technical data, for example an earlier standard flatbed

scan to produce a color-key setting.

RIP Interface Press
Default

Color Zones

PPF
Preview
Sheet

Interface Folder
Folding
Program

Assembly

Interface Cutter
Cutting
Program

PPF
Information

Press PostpressPrepress

Figure 1.3

Detailed PPF workflow

Figure 1.2

Distribution of PPF

information

3Chapter 1

• Through the publication and standardization of the Print

Production Format, PPF-compliant modules from diverse

manufacturers may communicate with each other.

Further details about Print Production Format may be found in

Section 4.2.

1.2 Key Features of Job Definition Format

JDF is sometimes considered an “electronic job folder“ (see Figure

1.4), but it is actually much more because it would be a job ticket

that, for instance, could control automatic workflows, preset ma-

chines, and log the working data.

Most important, JDF offers support:

• In transmission of order data

• In transmission of setup data

• In collection of production and machine data

• For planning

• In order tracking

The JDF specification includes the functionality of PPF, but also

goes far beyond. The following additional options are given for

JDF/JMF workflows:

• Support of the interface between estimating programs, that

is, management information systems and production. JDF

also lends itself to defining “soft” information, which may

be available at the time the product is specified, for example

an approximate line screen. Naturally, at some point in later

production processes, these parameters must be clearly

defined.

• Machine and operating data that enable job tracking as well

as the costing of each order.

• A protocol that, to a certain extent, can control jobs and

production equipment.

• Support of the e-commerce links between print product

buyers and print product manufacturers. “Business Objects“

can be defined, such as requests, quotes, order confirmations,

etc.

4 Introduction

• A basic approach for a plug-and-play method to integrate

new JDF/JMF software into a corresponding production

environment.

• The creation of a production log for individual print jobs.

• Methods which allow sections of the JDF data to be extracted

and passed on, whether to a service provider, such as plate

suppliers, or even different software modules in a print shop.

Upon completion of the outsourcing, the altered JDF sections

can be re-input into the original JDF. (Figure 1.5)

Figure 1.4

Annotated job ticket

provided during normal

production

5Chapter 1

The details of these points are discussed at length in later chapters

and perhaps are only then fully understandable. Yet it may already

be known that the JDF workflow, in comparison with JMF work-

flow, optimizes order handling (Figure 1.6).

But why is this facet more important? The answer is simple: the

reduction in average run length and the increase in average pro-

duction rate, and likewise the reduction of makeready times for

print and finishing machines, allow the company to increase the

number of jobs to be processed per hour. Therefore, the costs that

are independent of the run length decrease more and more signif-

Customers

Suppliers

Office Staff Prepress Press Postpress Shipping

Business Workflow (OMS, MIS)

Technical Production Workflow

Figure 1.5

Modification of a JDF

document when different

service providers are

involved with the tasks

<?xml version="1.0" encoding="UTF-8" ?>
<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1"
CommentURL="file://prinance/PRINANCE/JDFConnector
/Auftragstasche-HTML/07-0111.htm"
DescriptiveName="Zustände-WS0708"
ICSVersions="Base_L1-1.0 MISBC_L1-1.0"
ID="Link78056484_002162" JobID="07-0111"
JobPartID="07-0111" Status="Ready" Type="Product"
Version="1.2"
xmlns:HDM="www.heidelberg.com/schema/HDM">- <!--
Generated by the CIP4 Java open source JDF
Library version : CIP4 JDF Writer Java 1.2.42
alpha --> - <AuditPool> <Created
AgentName="Prinance" AgentVersion="4.5600
(Creator:Pnc_V02.00.00.12a fuer Prinance 4.60)"
Author="Administrator" ID="Link78056484_002163"
TimeStamp="2007-11-27T16:40:56+01:00" />
</AuditPool> <Comment
Name="JobDescription">Zustände-WS0708</Comment> -
<CustomerInfo
CustomerID="12201"
CustomerJobName="Zustände-WS0708"
DescriptiveName="HdM"> <ContactRef
rRef="Link78056484_002164" /> <ContactRef
rRef="Link78056484_002167" /> <ContactRef
rRef="Link78056484_002168" /> <ContactRef
rRef="Link78056484_002169" /> </CustomerInfo>-
<ResourcePool>- <Contact Class="Parameter"
ContactTypes="Customer" DescriptiveName="HdM"
ID="Link78056484_002164" Status="Available">
<CompanyRef rRef="Link78056484_002165" />
<AddressRef rRef="Link78056484_002166" />

<?xml version="1.0" encoding="UTF-8"
<JDF xmlns="http://www.CIP4.org/JDFSch
CommentURL="file://prinance/PRINANCE/J
/Auftragstasche-HTML/07-0111.htm"
DescriptiveName="Zustände-WS0708"
ICSVersions="Base_L1-1.0 MISBC_L1-1.0"
ID="Link78056484_002162" JobID="07-011
JobPartID="07-0111" Status="Ready" Type="Product"
Version="1.2"
xmlns:HDM="www.heidelberg.com/schema/HDM">- <!--
Generated by the CIP4 Java open source JDF
Library version : CIP4 JDF Writer Java 1.2.42
alpha --> - <AuditPool> <Created
AgentName="Prinance" AgentVersion="4.5600
(Creator:Pnc_V02.00.00.12a fuer Prinance 4.60)"
Author="Administrator" ID="Link78056484_002163"
TimeStamp="2007-11-27T16:40:56+01:00" />
</AuditPool> <Comment
Name="JobDescription">Zustände-WS0708</Comment> -
<CustomerInfo
</Contact> <Company Class="Parameter"
DescriptiveName="HdM" ID="Link78056484_002165"
OrganizationName="Hochschule der Medien"
Status="Available" /> <Address City="Stuttgart"
Class="Parameter" Country="Deutschland"
CountryCode="DE" ID="Link78056484_002166"
PostalCode="70569" Status="Available"
Street="Nobelstraße 10" /> - <Contact
Class="Parameter" ContactTypes="Administrator
CustomerID="12201"
CustomerJobName="Zustände-WS0708"
DescriptiveName="HdM"> <ContactRef
rRef="Link78056484_002164" /> <ContactRef
rRef="Link78056484_002167" /> <ContactRef
rRef="Link78056484_002168" /> <ContactRef
rRef="Link78056484_002169" /> </CustomerInfo>-
<ResourcePool>- <Contact Class="Parameter"
ContactTypes="Customer" DescriptiveName="HdM"
ID="Link78056484_002164" Status="Available">
<CompanyRef rRef="Link78056484_002165" />
<AddressRef rRef="Link78056484_002166" />

(Creator:Pnc_V02.00.00.12a fuer Prinance 4.60)"
Author="Administrator" ID="Link78056484_002163"
TimeStamp="2007-11-27T16:40:56+01:00" />
</AuditPool> <Comment
Name="JobDescription">Zustände-WS0708</Comment> -
<CustomerInfo

(Creator:Pnc_V02.00.00.12a fuer Prinance 4.60)"
Author="Administrator" ID="Link78056484_002163"
TimeStamp="2007-11-27T16:40:56+01:00" />
</AuditPool> <Comment
Name="JobDescription">Zustände-WS0708</Comment> -
<CustomerInfo
</Contact> <Company Class="Parameter"
DescriptiveName="HdM" ID="Link78056484_002165"
OrganizationName="Hochschule der Medien"
Status="Available" /> <Address City="Stuttgart"
Class="Parameter" Country="Deutschland"
CountryCode="DE" ID="Link78056484_002166"
PostalCode="70569" Status="Available"
Street="Nobelstraße 10" /> - <Contact
Class="Parameter" ContactTypes="Administrator

Original JDF document

Partial extracted JDF document

Partial modified JDF document

Final JDF document

Figure 1.6

Communication channels in

the JDF workflow

6 Introduction

icantly. And that is now primarily the cost of order handling and

prepress work.

1.3 Implementation of JDF Workflows

JDF is only a data format and not a workflow. The specification

does not contain any guidance for workflow producers as to how

they are to design their modules. Similar to Adobe‘s PDF specifica-

tion, there are no rules indicating which functionality a layout pro-

gram should have in order to export and import a PDF.

Nevertheless, there are some general things which apply to the

JDF workflow.

JDF files do not migrate freely from one program to the next or

from one machine to the next. That would indeed be theoretically

conceivable but probably a nightmare for software developers and

users alike. Instead there is a central point with a central database

in which the JDF files for the individual jobs are collected. This nerve

center may be a dedicated management information system

(MIS) or even an overarching production system.

JDF/JMF implementations are not consistently present in the print

production process, at least not currently. Often a few production

machines are connected, especially in finishing, but not to the JDF/

JMF network—or information is passed via other protocols, be it

PPF or proprietary. The traditional workflow for computer-to-plate

(CTP) systems were, in many cases, the seeds of broader JDF work-

flows. You can often find networking between MIS and the press-

room. However there are limitations on what information will be

funneled into the JDF/JMF. One would normally search in vain for

JDF-based operations in the graphics department of an advertis-

ing agency.

The JDF specification only defines the possible content which may

be exchanged between the workflow components. It does not ask

which information is available from which components and who

must then analyze it. It‘s a bit like if there was an agreement be-

tween air traffic controllers and pilots that data will be exchanged

about altitude, airspeed, and rate of descent, but not who is re-

sponsible for it, if anyone. And it also expands the JDF workflow

that affects the communications between different module classes,

such as the interface between MIS and prepress or between MIS

and press. For this purpose the CIP4 consortium already offers a

whole set of different papers [12] which go under the umbrella

7Chapter 1

term Interoperability Conformance Specifications (ICS). Fur-

ther details can be found in Section 6.7.

It took several years after the publication of JDF specification 1.0

in 2001 until the first JDF-compatible applications hit the market.

Since that time (since 2008) we are now at version 1.4 of the spec-

ification, but above all there are many JDF-compliant applications.

The CIP4 consortium regularly publishes a catalog of JDF applica-

tions and services under the title “The JDF Marketplace“ [14]. In

the June 2008 catalog, more than one hundred products and ser-

vices were listed.

Moreover, JDF software may be certified, which means that it will

be reviewed based on the ICS requirements. A list of certified prod-

ucts can also be found on the website of the CIP4 Organization

(www.cip4.org).

However, neither the mere existence of the ICS nor the certifica-

tions suggest that one may then indiscriminately or blindly plug in

software modules from different manufacturers without testing.

The devil lies in the details. The ICS provides only minimum stan-

dards, which for special print are absolutely not sufficient.

This is the reason that the creation or extension of JDF integration

into a print shop is always a project; one must always clarify many

things in advance with the manufacturers and users and also test.

Checkpoints and tips to a practical implementation of such a proj-

ect maybe be found in [35], and a more general discussion is pre-

sented in Chapter 13.

Exercise:

Familiarize yourself with the official website of the CIP4 Associa-

tion (www.cip4.org). In particular, read the Introduction to the cur-

rent specification [13].

9Chapter 2

2 Workflow Basics

In this chapter, two quite contrasting matters will be covered. Ini-

tially, the practices of three printers, which we will call X, Y, and Z,

are introduced. Company X has a workflow that is completely up

to date, but it contains no specific JDF features. Company Y, how-

ever, has implemented some components that use JDF. Company

Z is largely JDF/JMF networked.

After these rather concrete descriptions it becomes somewhat more

abstract. In Section 2.4, basic concepts such as workflow, work-

flow management systems, and job tickets are defined. Then we

cover some general characteristics of workflow, and finally imag-

ine a workflow classification which is based on specific printers.

2.1 Company without a JDF Workflow

The full-service Company X has only twelve employees. For the last

several years a modern workflow management system (WMS)

has been installed in the prepress department with a form proofer

and a platesetter as output options. The WMS can also create PPF

data for presetting the ink zones, but this functionality is not yet

being used. The pressroom works on three web offset presses: a

five-, a four-, and a two-color press with formats up to 50@70

cm. (19.7@27.5 in.). There is also a digital press with inline fin-

ishing. The finishing department has guillotine cutters and folding

machines, as well as a stamping and embossing book printing cyl-

inder. About fifty jobs are completed each week, and many jobs

consist of multiple subproducts.

Requests for quotes mostly come in to the shop through email or

telephone, sometimes by fax. A clerk or customer service represen-

tative (CSR) enters the most important details of the request into

the order management system. The estimate is often taken over by

the owner himself, for which he only uses a price table and pocket

calculator. In about a third of the requests, information required

to do the calculations is missing and the potential client must be

called back. The number of estimate revisions that are requested

by potential customers has grown dramatically in recent years. In

particular, advertising agencies often wish to slightly modify esti-

mates for their jobs.

The ratio of awarded contracts and quote offers is under 10%. As

with the awarded contracts, the print job data is mostly sent as

email attachments, of which 80% are PDFs; the rest are open data

(InDesign, QuarkXPress, Microsoft Office Suite). The CSR then or-

10 Workflow Basics

ders the paper, determines the imposition, assigns the job to a

press, and prints a run ticket out of the order management sys-

tem (OMS) (see Figure 1.6). For orders over $700 USD (500 Euros),

the CSR also sends a confirmation to the customer.

The prepress department of Company X then examines the sup-

plied files with a preflight program, where about two-thirds (of the

supplied files) have errors and must be corrected. Any errors that

can be corrected within ten minutes are resolved immediately with-

out contacting the client and without any charges levied. After dig-

ital prepress, a form proof is issued which is sent to the customer

via mail or by carrier. Only after the proof has been signed off and

approved by the customer are the plates output. If the order is a

rush and the customer has been known for years, a PDF proof of

the press sheet may be created and sent by email to the customer

for inspection. If the client explicitly requires a color match proof,

it will be created at another company.

The plates then go to the pressroom. A large wall calendar serves

as the planning board on which the end dates of the orders are

entered. Unfortunately, this does not always work out because the

CSR sometimes forgets to copy the due dates to the hanging cal-

endar in production.

During production there are often changes. If the customer calls

to make a change to the order, the CSR searches the shop for the

run ticket and inserts the changes within. The invoicing and dun-

ning processes (pursuing accounts receivable) are supported by

the order management system. There is also an online interface

to the tax authority.

A costing of the order occurs only sporadically and then is done

manually. The daily run sheets are only occasionally completed in

order to verify the internal price table for estimating from time to

time.

Order processing for digital printing is identical to the procedures

for offset printing.

The owner believes that in his company, highly productive and au-

tomated production equipment could be used, but order handling

has not reached the same level of automation.

In fact, this appears to be a very typical situation in smaller print-

ing companies.

11Chapter 2

2.2 Company with a Partial JDF Integration

Print Service Provider Y primarily prints catalogs, magazines, and

magazine inserts on its two large web presses and covers in IIIB

format for these products on its sheetfed offset press. The firm

receives requests for quotes either from existing customers or

from sales representatives who acquire new customers. There is a

paper-based quote request form for the sales representatives to

enter details such as page count, circulation, paper, color, etc.

Orders from the inside sales staff are recorded in an order man-

agement system (OMS); with new customers, the customer‘s basic

information is also requested. Likewise, the costing is done with

the order management system. The quotes are sent to the poten-

tial customers, and the sales staff follows up with the lead, if nec-

essary, to renegotiate and issue amended quotes.

At the time of the order placement, information for the Production

Planning and Control department (such as required press capacity,

input date, and delivery date) is printed out of the order manage-

ment system. Employees there plan the job and place the appro-

priate card in the planning table. The planning data is not passed

back into the order management system, so scheduling conflicts

are not reported automatically in the order management system.

The paper order is triggered by an inside staffer after consultation

with the paper purchaser. The order is then automatically sent to

the paper supplier.

Of course, the order management system sends an order confir-

mation to the customer in parallel to this.

The sheet plan (fold, press sheets, and pagination) are specified

in the order management system. Production details that are not

necessary for estimating are also entered, such as the specifica-

tions for the RIP. The OMS then generates an electronic order ticket

for each job as an HTML document so that all of the information

is available company-wide. A separate paper document is printed

out for the prepress department in which the processes are listed

and are signed off on after completion by the staff. Information

is transferred using JDF from the prepress workflow system so

that many of the values entered into the OMS can be automati-

cally transferred. From there, data is passed to the printing presses,

mainly color zone presets in PPF format (see Section 4.2), but also

preview images for the color-accurate soft proof which is used for

color matching. The press approval is made by the customer either

via a classic hardcopy proof or even, especially in less substantial

12 Workflow Basics

products, via an Internet portal. There, the customers of the print

service providers can make correction requests or grant approvals

which flow directly into the prepress workflow system.

The plant data collection occurs via terminals into which the staff‘s

working hours, cost centers, setup times, and the like are entered.

The presses provide status information to a networked machine au-

tomation system; however, it has no connection back to the OMS.

Here, the benchmarks must be transferred manually. The OMS then

determines the final costing, meaning the variations between the

estimated costs and the actual situation.

This example makes two things clear: first it shows the improve-

ments in production that are achieved by an OMS and the corre-

sponding JDF interfaces. It also shows the typical dilemma of JDF:

many interfaces, such as online press approval or between the

OMS and production planning, are partially achieved with propri-

etary data formats or are only manually operated.

2.3 Company with Extensive JDF/JMF Networking

The fully integrated Business Z, with one hundred fifty employees,

is a typical full-service printer that not only prints books, brochures,

and magazines, but also business documents and business cards.

Orders are generally received via email and fax. The estimates are

done in a management information system. The MIS has an online

link to paper suppliers, and each night the current daily price is au-

tomatically updated in the system. Inventory for the paper order is

verified against stock in the high-rack warehouse directly over the

Internet to the paper supplier. The interface is conducted through

a proprietary messaging protocol (XML).

If an estimate becomes an order, an HTML job jacket is available

to anyone across the enterprise and is generated directly from the

database at each request.

The MIS generates a single JDF file per order, which is passed on

to a workflow server in the production area. All of the production

data relevant to the instructions are stored there. With the help

of the JDF data, not only can electronic production planning be

carried out, but the jobs can also be handled in prepress. The lat-

ter means that the imposition, layout, and other production data

can be transferred from the JDF file and, if necessary, can also be

modified.

Customers often upload the print data to the print shop‘s server

via the Internet. The print shop‘s production system receives the

13Chapter 2

message, and the data is received and processed. The results of

the verification are recorded in the associated JDF file and also

sent to the customer.

Four of the six printing presses receive the necessary data, such as

sheet size, color zones, and colors, via JDF/JMF. Device settings and

information about the order are reciprocally sent back to the work-

flow server. Two other older offline presses are connected via ter-

minals. The workflow server, for its part, sends a portion of the op-

erating and machine data, received from prepress and the presses

(for example, plate consumption or specific job-related milestones

like completion of the plates or the end of the press process) back

to the order management system.

The postpress finishing machines are not currently directly net-

worked; the shop floor data collection takes place exclusively via

data-entry terminals.

After the completion of production, the OMS prints out a shipping

order. However, a data connection to the logistics companies was

not implemented because shipping is carried out by too many dif-

ferent companies, often by small local shippers which have no sys-

tem connectivity to take orders.

Even with this company it is clear that, despite the very high de-

gree of connectivity, many areas are still not integrated with JDF/

JMF. This includes, for example, finishing, where there are long-

standing, vendor-specific workflow solutions. Because of the usual

long investment cycles in this area, it takes many years for new

technologies to be employed.

2.4 Definitions

A workflow is a “production flow“ or a “river of work,“ and a

workflow management system is a system for managing this pro-

duction flow. And the water, which in the year 1555 drove the

river of work, is today replaced by a job ticket (see Figure 2.1). Ba-

sically that‘s it, but we still want the terms to be explained a little

more precisely so we are not lost in the vastness of the definition.

We begin with the term computer supported cooperative work

(CSCW). It is the interdisciplinary field of research that focuses on

group work, especially with the communication technologies re-

quired for it. The different perspectives on CSCW are presented

in detail as an example in [41]. Groupware is a CSCW applica-

tion, in other words a software and hardware solution for CSCW.

Groupware products are many and diverse. An email system is an

14 Workflow Basics

important example to name, but conferencing, planning, group

editing, and information systems are also included in this category.

We understand a workflow to be a series of defined work steps,

whereby sequences of activities are triggered through events that

are controlled and terminated. Initially the workflow must not be

computer assisted. Cooking, for example, would be a workflow,

and so would printing on a printing press—its defined steps in-

clude setup, plate changing, adjustments, sheet pulls, registration

and color proofing, press approval specification, pressrun moni-

toring, etc.

Workflow management includes the tasks of definition (model-

ing), management, execution, control, and sometimes the simula-

tion of workflows. To stay with the previously discussed examples,

the organization of a kitchen or also the scheduling of print jobs

with a planning board can be described as workflow management.

Finally, a workflow management system (WMS) is group-

ware to support workflow management. Therefore, a WMS is a

computer-based application that will help define, manage, and

control sequences of operations.

If this issue is of specific interest to you, refer to [31] and par-

ticularly to the website of the Workflow Management Coalition

(WfMC) [43], whose definition of workflow and workflow man-

agement systems we share here:

Workflow: The automation of a business process, in whole or part, during

which documents, information or tasks are passed from one participant to

another for action, according to a set of procedural rules.

Figure 2.1

Olaus Magnus

Historia de gentibus

septentrionalibus (A

History of the Northern

Peoples), 1555

Forges de Dalécarlie

Bibliothèque

Sainte-Geneviève

15Chapter 2

Workflow Management System: A system that defines, creates and man-

ages the execution of workflows through the use of software, running on

one or more workflow engines, which is able to interpret the process defini-

tion, interact with workflow participants and, where required, invoke the use

of IT tools and applications.

Therefore, the term JDF workflow is actually not totally correct;

rather one should talk about a “JDF-based workflow manage-

ment system.“ But because this is a mouthful, for practicality, the

concept is generally referred to as “JDF workflow,“ and we con-

clude on that.

Job tickets are defined as electronic information packages sup-

porting workflow management systems in the graphic arts indus-

try. A job ticket, for example, can be a work instruction or a set of

parameters to control the print job. In particular, job tickets can

naturally be written in Job Definition Format. In other words, JDF

is an example of a job ticket format.

A WMS exists out of multiple workflow engines, also called job

ticket processors. These are software modules (like a trapping

engine, color transformation modules, or the control station of a

printing press) which are able to produce, interpret, and execute

job tickets.

In prepress, job tickets provide a form of metadata, i.e., data that

can contain information about other data. The metadata are in

contrast and at the same time linked with the content data. The

latter are the print data, such as open applications data from In-

Design, Quark, etc., or the closed exchange formats like PDF. Meta-

data can be separated into “object descriptions“ and “instruc-

tions.“ By way of example, an object description is the declara-

tion that an image has a resolution of 400 ppi. An instruction, on

the other hand, would be that this image should be scaled down

to 300 ppi. Metadata and content data can be present together

in a file (see XMP in Section 4.1) or separately, such as JDF. If the

metadata lies outside of the content data, the content data must

be referenced, for example, a referral to the file name.

Even though metadata and content data are separated, the bound-

ary between the two is blurred frequently. In the mere file name

of the content data lays meta information, which is certain to be

used by the WMS for workflow control.

16 Workflow Basics

2.5 Workflow Classification

Now that the term workflow management system has been

more precisely defined, we want to divide it into three stages for

the graphic arts industry:

• WMS within a department

• Cross-departmental WMS within an organization

• Cross-enterprise WMS with Web-based links (“online portals“)

to customers and/or suppliers

The cross-departmental WMSs are again, for practical consider-

ations, often divided into:

• WMS with a connection to the MIS

• WMS without a connection to the MIS

Because, in fact, MIS connectivity plays a crucial role. This is known

also as workflow integration.

Obviously the categories described are, in reality, not always so

clearly distinguishable from each other. A WMS generally is used to

bind together only a part of all of the activities; that is to say there

are activities within a department that are not supported by the

WMS, or there are whole departments which are not integrated

with a cross-departmental WMS. It is, therefore, always a ques-

tion of the WMS scope. A RIP, which also provides data for calcu-

lating the color zone settings of the press, is already an example

of a cross-departmental WMS, as is a printing company which has

integrated JDF into several departments.

The three categories will be explained in greater detail.

The traditional workflow is sketched out in Figure 2.2. The cus-

tomer or, as the case may be, the person placing the order, com-

municates metadata (green arrow) as well as content data (black

arrow) to the job manager of the print shop. Metadata is com-

monly sent to the print shop by phone or by email; content data is

commonly sent over the Internet as an email attachment, or occa-

sionally on a CD or DVD. After the CSR enters the job in an OMS

and the job ticket has been printed, the CSR forwards the data

to production for validation and data processing. In the “individ-

ual components workflow“ diagram, the print data are processed

by various software components in which “Assembly” and “RIP”

stand only as examples. If more people and more computers are

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

@

17Chapter 2

involved in the production process, the data is cached on a file

server and the job ticket will nevertheless be passed manually. Fi-

nally, a press plate is output and sent to the pressroom along with

the job ticket. For order tracking, the order manager must con-

tact (by phone or in person) the individual stations of the produc-

tion process.

What are the obvious weaknesses of this workflow? There are a

number of things to mention:

• The content data and order data are transferred via different

communication channels, which reduces production reliability.

• Data collection either occurs independently of the work

process or does not occur at all.

• Order tracking (job tracking) is expensive.

• Preset information from machines must always be entered

from scratch.

50 €50 €50 €
EURO

50 €

@@@@@@@@(

@@@@@@

RIPAssemblyData Entry PressCTP

Plates

ORDER

0815

ORDER

0815

File Server

ORDER

0815
ORDER

0815
ORDER

0815
ORDER

0815 Finishing

Press Sheets

Customer

Customer Service Rep

Figure 2.2

Traditional model of a

prepress workflow

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

@

18 Workflow Basics

This way of working, therefore, does not strictly adhere to the

definition of a real workflow management system. One sees such

a workflow management system in Figure 2.3. Using a client-server

workflow system, production can be automated considerably better.

As a client, the user(s) call up the necessary job tickets which have

been forwarded to the server-based job ticket processors. Gener-

ally, only the system administrator may edit the default job tickets,

for example to set a 70 line screen default generated by the raster

for output. A typical prepress operator may then only change the

individual entry for his press order.

Through these firmly defined job tickets, which can still be ad-

justed individually, one gains a high level of production reliability

and flexibility.

The black arrows which lie in the WMS with the yellow background

transport content as well as metadata. Here, the strict separation

of the two communications channels is overcome.

50 €50 €50 €
EURO

50 €

@@@@@@@@(

@@@@@@

RIP
Workflow

Server
CTP

(

@@@@@@

JobTicket

JobTicket

Workflow
Management
System

ORDER

0815

File Server

ORDER

0815
ORDER

0815 Finishing

Press SheetsPlates

Press

Customer

Customer Service Rep

Workflow-
Client

Data Entry,
Assembly

Figure 2.3

Client-Server-based WMS

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

@

19Chapter 2

The concept represents a significant improvement over the individual-

component workflow, but still has some limitations:

• No overall order and production management

• No overall data collection (performance data collection)

• No interdepartmental transfer of presets for machines

With such a WMS the cross-functional electronic transmission of

information is already common. This data, for example, which is

used as the basis for calculating color zone settings, is pulled up

from prepress and passed to the pressroom.

A complete and integrated

cross-departmental WMS

within a company is outlined

in Figure 2.4. This metadata is

transported over the local net-

work to the various depart-

ments and back again. The

content data are managed by

the client, of course, only up

to the prepress department.

It should again be noted that

such a plan does not reflect re-

ality, since the network is cur-

rently only partially set up in

the firm.

In Figure 2.5, final data ex-

change occurs only through

the Internet. Order manage-

ment, prepress, and plate pro-

duction may lie in any location

in the world and be performed

by different companies. Geo-

graphic proximity is only nec-

essary when physical things,

such as printing plates or press

sheets, must be transported. In-

deed such a plan seems to be

unrealistic or exaggerated, but if you look at recent examples of

Internet-based workflows between customer and print shop, it’s

clear that we are not so far from it.

50 €50 €50 €
EURO

50 €

(

@@@@@@

Prepress

Workflow

Server

Postpress
Plates

File Server Database

Press

JobTicket

JobTicketJobTicket JobTicket

@@@@@@@@

Press Sheets

Customer

Customer Service Rep

JobTicket

Figure 2.4

Fully integrated WMS

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

20 Introduction

Figure 2.5

Internet-based WMS

(The locations of the

participating “service

providers“ play almost

no role)

(

@@@@@@

Plates

File Server Datanbase

Press Sheets

JobTicket

50 €50 €50 €
EURO

50 €

PostpressPrepress

JobTicket

JobTicket

(

@@@@@@@

Press

JobTicket

JobTicket

2.6 Properties of WMS and

Job Ticket Formats

We want to provide a more

detailed discussion of the fol-

lowing three requirements

of workflow management

systems, or the underlying

job ticket data formats: adapt-

ability, standardization, and

extensibility.

These keywords seem to be

quite self-explanatory at first

glance, but are not without

problems on closer inspection.

Adaptability

The WMS model must adapt to

the workflow of a business and

not the other way around. This

seemingly accurate statement

has its limits: a totally chaotic

workflow can not be modeled. Rather, a WMS with an arbitrary,

but well-defined production method should be depicted. In fact,

analyzing and defining the production method is an important

and difficult task when introducing a JDF workflow in a company.

Business and production procedures generally run chronologically

not just serially but also in parallel, or alternating, overlapping, or

iterative and repetitive (see Figure 2.6). There are many examples

of these situations in the production of printed products:

• Serial: First print, then fold…

• Parallel: Create text and images for a page layout

• Overlapping: Plates (several types), exposing and printing

• Alternative: Print the job on machine A or machine B

• Iterative: Proof, corrections, proof, approval

A WMS must be able to model these situations. This raises the

question of what must be anchored in the job ticket file format

and what is anchored in the WMS software the job ticket uses.

21Chapter 2

In JDF one can model overlapping procedures, for example. For this

purpose, the concept of a “pipe,“ i.e., a tube, is used. The prin-

ciple is that an operation produces an output (for example, cre-

ating printing plates), and this feeds into the pipe and overlaps a

second process (printing), the output virtually obtained from the

pipe is used as input for the next step (Figure 2.7). And while print-

ing takes place, the plate burner can store more plates in the pipe.

In other words, one could also describe the structure as a ware-

house or a silo.

In the manufacture of a printed product, it is also quite typical that,

during the course of production, many technical and organiza-

tional details are clarified. This means that the job tickets must be

dynamic and able to constantly receive new information. The ex-

act color zone presets, for example, are unknown when the order

is accepted. Furthermore, the print product may have been speci-

fied, but not clearly enough, at the beginning of production. Per-

haps at that point, as mentioned before, only the approximate line

Process 1 Process 2 Process 3

Process 1 Process 2

Process 3 Process 4

Process 1 Process 3

Process 1

Process 2a

Process 3

Process 2b

Serial Events

Overlapping Events

Iterative Events

Parallel or Alternating Events

and/or

Process 2

Figure 2.6

Different sequence

possibilities of business and

production processes

22 Workflow Basics

screen is known, but during the course of production the infor-

mation is more precisely defined. The WMS and job ticket format

must take these changes and updates into account.

Even changes in production parameters during job processing (e.g.,

triggered by the client) are quite common but, unfortunately, very

difficult to model in a WMS. Much development work is neces-

sary here.

Standardization

To allow the possibility of cross-vendor integration of WMS en-

gines, it is necessary to standardize the underlying communica-

tion. However, standardization has its limits. After all, what would

that ultimately mean?

First, a job ticket format must be complete, meaning it must be

capable of handling all of the possible communications content

for graphics products. If this were not so, some of the WMS ven-

dors would not use the standard job ticket format because of the

lack of functionality for their specific products. The alternative is

that the WMS vendors must restrict the functionality of what may

be defined in the job ticket format; as a result progress would be

completely blocked and firms would not be able to differentiate

their products. Finally, such a standard must be voluntarily agreed

upon between firms and not by national regulation. Accordingly,

a restriction is totally unrealistic. Standardization that is not fully

fleshed out will be doomed to failure. On the other hand, their

complete specification will never be achieved because production

methods are much too complex.

So how does one solve this dilemma? The answer is that standard-

ization can only be completed up to a certain point and job tickets

will be supplemented with non-standardized information. This ac-

tually contradicts the idea of standardization and can also lead to

incompatibilities between workflow engines, but it is the only

remaining way out. We will go into the so-called “extensibility“ of

job ticket format shortly.

It is not enough to only define the content of the communica-

tion, i.e., the “what,“ within the specification of job ticket for-

mat. It also needs to establish the “who.“ A communication be-

tween many workflow engines can only function correctly if it is

clear who provides certain information and, conversely, who can

rely on receiving the information. Within JDF/JMF we are given

Figure 2.7

Any amateur gardener

knows the pipe principle of

the rainwater barrel:

1) The output of the rain is

the input of the barrel

2) During a rainfall, one can

simultaneously water plants

as long as there is water in

the barrel (pipe)

23Chapter 2

Interoperability Conformance Specifications (ICS), which are

discussed in Section 6.7.

Yet, a very pragmatic viewpoint illustrates a limitation in standard-

ization. Workflow management systems are not, or at least only

rarely are, programmed from scratch but instead evolve over years.

Legacy systems must frequently be considered, and conversions to

new job ticket formats only take place little by little. That is why

you also find workflow engines in the latest JDF/JMF-based work-

flow management systems which have communications channels

that rely on proprietary (vendor-specific) or older job ticket formats.

Finally, here’s one last more or less trivial observation: standards

evolve! There are already four versions of the JDF specification, and,

therefore, the danger naturally arises that workflow engines will

“speak“ and “understand“ differing versions.

Extensibility

Despite a standard model, the WMS vendor must allow room for

the possibility of appending a special extension. This demand for

“extensibility“ especially goes for the job ticket data format. For all

that, what does such a feature for data formats look like?

Job ticket information is arranged according to the rules and struc-

ture (the “syntax“) of other languages with respect to document

structure. In practice these are:

• PostScript (PS)

• Portable Document Format (PDF)

• Extensible Markup Language (XML)

In Chapter 4 the job ticket formats PPF and Portable Job Ticket

Format (PJTF) will be analyzed in more detail. It should be noted

at this point that PPF is encoded in PostScript and PJTF is encoded

in PDF. Job Definition Format has an XML document structure. The

extensibility of XML is explained in Section 5.2

PS and PDF are well known in the graphic arts industry ([4] and [5])

as page description languages, or rather as a document struc-

tures for page description. The scope of their language may be

expanded in both; in other words, private keywords may be freely

chosen and optionally registered with Adobe Systems Incorporated

(in order to avoid name conflicts). At this point we want to put

forward the expansion possibilities of PS with the help of an

24 Workflow Basics

example. The process within the object-oriented PDF is exactly

the same.

In PS, variable names can be defined and initialized with values.

The variable name is a string and is indicated by a leading slash

(/). The keyword def assigns a value to the variable. For example,

the PS code

/hev /Helvetica-Bold def

defines a new variable with the name hev which holds the value

Helvetica-Bold. In this case the new variable simply serves as short-

hand for the longer original name. In exactly the same way, one

writes the line

/CIP3PreviewImageWidth 1425 def

The variable name CIP3PreviewImageWidth is defined in the PPF

specification and, according to the agreement, gives the width of

the preview image in pixels. Likewise, you can define your own in-

vented variable with your own values, for example

/MyExtension /TotallyAwesome def

This is valid PS code which, naturally, you can‘t do anything with.

But companies can populate PPF with their own variables and other

PS structures so that they may transmit their own supplementary

workflow information, which the CIP3 organization didn‘t allow

for in PPF.

These proprietary extensions do not describe “theoretical possibili-

ties“; instead they are employed often in practice in PPF, PJTF, and

also JDF! For this reason, in certain circumstances, compatibility be-

tween systems is restricted. Therefore, the proprietary entries only

supplement and should not replace the standardized information.

If workflow engines encounter proprietary extensions and they do

not understand them, they are encouraged to ignore them.

In summary, you could say that the three terms adaptability, stan-

dardization, and extensibility contradict each other and that a kind

of compromise must be found between these three properties in

the specification of job ticket formats, and especially in the imple-

mentation of workflow management systems.

25Chapter 3

3 Print Workflow Models

In this chapter the following four workflow models are described

within the context of print workflows, with the help of several ex-

amples:

• Activity lists

• State transition diagrams and activity diagrams

• Flowcharts

• Producer-consumer model or process-resource model

Other modeling approaches for common business processes can

be found in [18].

Activity lists are also often referred as “to-do“ lists and illustrate

a collection of subtasks, such as a common shopping list. An ex-

panded activity list can also, perhaps, list the responsibility and the

beginning and the end dates of the subtasks. So it is just a ques-

tion of who does what, when, and with what resources. Not shown

in the activity lists are the dependencies between the subtasks or

explicit listings of criteria for deciding between possible branches

in work processes.

The latter is an important feature of state transition diagrams.

In a state transition diagram, states are drawn as rectangles or cir-

cles and state transitions with arrows between the relevant states.

A classic illustration is the states of a machine, such as stationary, in

use, on hold, and fault (Figure 3.1). In the event of a fault, for ex-

ample, there is a state transition from stationary or in use to fault.

In the workflow description one can have the same kind of dia-

busyidle

fault

paused

Start Stopterminate

activate

interrupt

Figure 3.1

Possible states for a

machine in production

26 Print Workflow Models

grams, but, instead of states, activities are represented here. The ar-

rows are consequently the transitions between the activities, and in

this book we will call such diagrams activity diagrams. In this way

even baking recipes can be represented very clearly (Figure 3.2).

First and foremost, flowcharts serve as a visualization of program

sequences in software development. One may also find them in

general models of business and

production process applica-

tions, or they may even be very

helpful in planning for everyday

life as we see in Figure 3.3. The

green and red circles mark, re-

spectively, the beginning and

the end of the diagram, the yel-

low parallelogram shows an in-

put or output, and the orange

diamond indicates a choice that

allows only a yes or no answer.

The blue rectangle represents

common operations; the gray

rectangle with the double ver-

tical line is a subroutine which

is generally more precisely spec-

ified in a new flowchart. All of

the geometric elements are

standardized in their meaning,

but not in the colors that we

have given them.

The producer-consumer model,

which we may also call the process-resource model, describes

exactly what one would expect: a producer processes a product

and places it in a “data buffer,” such as on a shelf in a supermar-

ket. The consumer takes a piece from the buffer and uses it. Both

processes are uncoupled from each other temporally; of course,

the producer must first produce something before the consumer

may consume it.

Mix ingredients
together

Pour batter
into cake pan

Stir Bake cakeStart Stop

Burnt

Input
day of the week

Work day?

Sleep in
and do nothing!

Slave away

Start

Stop

yes

no

Figure 3.3

Flowchart of various

operations

Figure 3.2

Activity chart for baking a

cake

27Chapter 3

In the print workflow, this model is very common, except that one

simply speaks of processes and products (i.e., “resources”) instead

of producers and consumers. The plate-burning process, as an ex-

ample, produces the burned printing plates, which are consumed

by the printing process. In turn, the printing process generates a

resource, namely a stack of printed sheets which are used by a fin-

ishing process, and so on (Figure 3.4).

Further, cake baking, which we modeled with the state transition

diagram in Figure 3.2, can also be represented very nicely in a pro-

ducer-consumer model. The mixing of ingredients, the stirring, etc.,

are the processes; the ingredients themselves, such as the flour,

eggs, butter, and milk, as well as the results at each stage, such

as the batter or the filled baking pan, are the resources. You can

follow this rule of thumb: the processes are the verbs and the re-

sources are the nouns.

The JDF model is based on the process-resource principle and there-

fore will be referenced throughout the entire book.

We will now apply these three models to the areas of order man-

agement, prepress, press, and postpress.

3.1 Order Management

The activities of order management, up to awarding the order, can

simply be reduced to the following list:

• Request for quotation (customer to the printer)

• Quotation submission (printer to customer)

• Awarding the order (customer to printer)

• Order confirmation (printer to customer)

Clearly there is a temporal relationship between the subtasks and

describing these activities with a diagram such as in Figure 3.5

helps to clarify the process.

Platemaking

Press

Additional
processing

Press
sheet

Plates

End
product

Request
for quote

Create
the quote

Change to order

Confirm
order

Award
order/contract

Start Stop

Customer CustomerPrinter Printer

Figure 3.4

Producer-consumer model

in the print workflow

Figure 3.5

Order management

activities

28 Print Workflow Models

As a general rule, a workflow

can be illustrated in greater de-

tail with a flowchart because

each activity—and also each

transition between the activ-

ities in an activity diagram—

can themselves generate many

questions and operations with

respect to the flowchart termi-

nology. In Figure 3.6 the print

shop‘s actions in Figure 3.5 are

represented once again in de-

tail as a flowchart (see also Fig-

ure 3 In [40]).

3.2 Output Workflow in

Prepress

The platemaking department

of a print shop, on receiving

the finished PDF pages, typi-

cally has the following activi-

ties (for clarification of terms,

see the glossary at the end of

the book):

l Conduct preflight and, if

necessary, data correction

l Normalize the PDF data

l Perform color space

transformations

• Trapping

• Create or, as applicable, select one or more imposition layouts

(press sheet layout)

• Imposition

• RIP the data to the output of a plotter for the form proof(s)

• Print approval

• RIP the data to produce preview images

Figure 3.6

Flowchart showing actions

of a print shop
Start

Stop

yes

Run
job

Confirm
order

Cancel
order

Create
quote

Customer
accepted?

Customer
accepted?

Rejection
process

New
quote?

yes

yes

no

no

no

29Chapter 3

• RIP the data to imaging, platesetting, and developing of

printing plates

• Calculate of the color zone preset values

Let’s take a quick look at the difference between “stripping” and

“imposition,” because in practice these two concepts are not nor-

mally divided accurately. With the creation of a press sheet layout,

the first thing that is determined is the size of the press sheet and

the starting point of the paper (the position of the press sheet on

the press plate). In commercial web printing, the pages or posi-

tioning are defined by their sizes and positioned on a virtual press

sheet, often with the help of an imposition schema. This must in-

clude the type of binding and the type of perfecting with respect

to the gripper margin and other margins, such as low folio and

high folio, or take into account grind-off for adhesive binding. The

page order is defined as a placeholder (template) with no content.

The placeholder pages are referred to as “sample pages.” Finally

marks such as the color bar, cut and fold marks, register marks,

and the like are placed on the sheet. The result is an imposition

sheet, or a press sheet layout.

At the imposition, the pages or positioning which typically exist in

PDF format are assigned manually or automatically and are added

to the imposition sheet together with the markings. The sample

pages are filled with content, and they contain data which the

sheets depict as an example in PDF format (Figure 3.7).

In the past, both processes would be carried out within one pro-

gram, the imposition or assembly software. Today, this is com-

monly separated: the generation of the sheet layout is done un-

Figure 3.7

Sheetfed layout creation

and imposition

28 Workfl ow-Modelle

ser Weise sehr übersichtlich darstellen (Abbildung 3.2).

Die Flussdiagramme dienen in erster Linie zur Darstellung von Pro-
grammabläufen bei der Software-Entwicklung. Sie fi nden aber auch
in allgemeineren Modellen zu Geschäfts- und Produktionsprozessen

Anwendung oder können sogar bei der Lebensplanung für den All-
tag sehr hilfreich sein, wie man in Abbildung 3.3 sieht. Die grünen

bzw. roten Kreise markieren den

Anfang und das Ende des Di-
agramms, das gelbe Parallelo-
gramm eine Ein- oder Ausgabe,

die orange Raute eine Abfrage,
die aber nur ja oder nein als Ant-
wort zulässt. Das blaue Rechteck
stellt eine allgemeine Operation

dar, das graue mit den doppel-
ten, vertikalen Linien ein Unter-
programm, das in der Regel mit

einem neuen Flussplan genauer
spezifi ziert wird.

Das Produzent- / Konsumentmo-

dell, das auch Erzeuger- / Ver-
braucher-Modell genannt wird,
beschreibt genau das, was man

erwarten würde: Ein Produzent
erzeugt ein Produkt und stellt es
in einen Pufferspeicher, wie z.B in

ein Regal in einem Supermarkt.
Der Konsument entnimmt ein
Stück aus dem Puffer und ver-

braucht es. Beide Vorgänge sind
zeitlich von einander entkoppelt,

nur muss der Produzent natürlich erst einmal etwas produzieren, be-

vor der Konsument es konsumieren kann.

Im Print-Workfl ow ist dieses Modell sehr weit verbreitet, nur dass
man anstatt von Produzenten und Konsumenten schlicht von Prozes-

sen redet und anstatt von Produkten von Ressourcen. Ein Plattenbe-
lichtungsprozess erzeugt beispielsweise als Ressource die belichteten

Zutaten zu-
sammenmixen

Teig in Form
gießen

Teig rühren Kuchen backenStart Ende

verbrannt

Wochentag
einlesen

Arbeitstag?

Ausschlafen
und nichts tun!

schuften

Start

Stop

ja

 nein

Abbildung 3.2 stellet ein
Aktivitätendiagramm für das
Backen eines Kuchens dar

Abbildung 3.3 zeigt ein Fluß-

diagramm mit unterschied-

lichen Operationen

29Kapitel 3

Druckplatten, die von dem Druckprozess gewissermaßen konsumiert
werden. Der Druckprozess erzeugt seinerseits wieder eine Ressource,

nämlich einen Stapel Druckbögen, der von einem Weiterverarbei-
tungsprozess verwendet wird und so weiter (Abbildung 3.4).

Auch das Kuchenbacken, das wir in Abbildung 3.2 mit einem Zu-

standsübergangsdiagramm modelliert haben, lässt sich alternativ sehr
schön in einem Produzent - / Konsument – Modell darstellen. Die Zu-
taten zu mixen, zu verrühren usw. sind die Prozesse, die Zutaten sel-

ber, also Mehl, Eier, Butter und Milch, sowie die Zwischenergebnisse
wie der Rührteig oder die gefüllte Backform sind die Ressourcen. Da-
bei gilt die Faustregel: Die Prozesse sind die Verben, die Ressourcen
sind die Substantive.

Das JDF-Modell beruht auf dem Prozess- / Ressourcen-Prinzip und
folglich wird es uns über das gesamte Buch begleiten.

Wir werden nun diese drei Modelle auf die Teilbereiche Auftragsma-
nagement, Prepress, Press und Postpress anwenden.

3.1 Auftragsmanagement

Die Aktivitäten des Auftragsmanagement bis zur Auftragserteilung
lassen sich etwas vereinfacht in folgender Liste zusammenstellen:

Angebot anfordern (Kunde zu Druckerei)
Angebot abgeben (Druckerei zu Kunde)
Auftrag erteilen (Kunde zu Druckerei)
Auftrag bestätigen (Druckerei zu Kunde)

Offenbar gibt es hier eine zeitliche Abhängigkeit zwischen den Tei-
laufgaben und es liegt nahe, diese dann mit einem Zustandsüber-

gangsdiagramm wie in Abbildung 3.5 zu beschreiben.

In der Regel kann man einen Workfl ow mit einem Flussdiagramm noch
detaillierter beschreiben. Denn jede Aktion und auch jeder Übergang
zwischen den Aktionen in einem Zustandsübergangsdiagramm kann
selbst wieder eine Menge von Abfragen und Operationen gemäß der
Flussdiagramm-Terminologie sein. In der Abbildung 3.6 ist die Aktion
„Angebot schreiben“ aus dem Diagramm 3.5 noch einmal ausführ-

•
•
•
•

Platten-
herstellung

Druck

Weiter-
verarbeitung

Druck-
bogen

Druck-
platten

End-
produkt

Angebot
anfordern

Angebot
schreiben

bei nachträglicher Auftragsänderung

Auftrag
bestätigen

Auftrag
erteilen

Start Stop

Abbildung 3.4

Das Produzent-/Konsumet-
modell im Print-Workfl ow

Abbildung 3.5
Aktivitäten des Auftragsma-

nagement

32 Workfl ow-Modelle

entsprechenden Prozesse bereit
stellen. Die RIPing-Ressource R

7

wird beispielsweise die Informa-
tionen über den Rasterprozess
(Rastertyp, Rasterfrequenz, Ras-
terwinkel,...) enthalten, die Bo-

gen-Layout-Ressource Angaben
über das Ausschießschema, die
Bindeart, die Bogenwendung

etc.

Auf eine ausführliche Beschrei-

bung aller Einzelheiten, die sich
in den Ressourcen befi nden kön-
nen, müssen wir aus Platzgrün-

den verzichten. Es würde ein
eigenes Buch füllen. In der Ab-
bildung 3.9 werden die violetten
Ressourcen nur kurz aufgelistet.

Man sollte sich allerdings darüber
im Klaren sein, dass das Szenario

in der Abbildung 3.9 nur ein Bei-
spiel für einen Workfl ow in der
Druckformherstellung beschrei-
ben, das keine strikte Allgemein-

gültigkeit besitzt. So werden wir
in Kapitel 12 auch sehen, dass
bei der Faltschachtelproduktion

eine komplett andere Arbeits-
weise üblich ist. Und auch bei
der Benennung der Ressourcen

in 3.9 haben wir Annahmen ge-
troffen, die nicht immer zutreffen
müssen. So wurde für die Res-

sourcen R
11

 und R
13

 die Angabe „PDF-Seiten“ gemacht. Allgemeiner

und damit richtiger – aber auch etwas umständlicher - wäre es von
einer in einer „Seitenbeschreibungssprache formulierten Seitenfolge“
zu reden.

Die Ressource R
11

 würde typischerweise das Ergebnis eines Seiten-
layoutprozesses sein. Die beiden Ressourcen R

22
 (Formproof) und R

24

(belichtete Druckplatten) sind physische Ressourcen, also nicht nur

Datensätze, sondern Dinge, die eine körperliche Beschaffenheit be-
sitzen. R

22
 wird häufi g nach einem Abstimmungsprozess mit dem

Kunden oder auch direkt an den Druckprozess weitergereicht. Auch

die Ressourcen R
23

 (Farbzonenvoreinstellwerte) und R
24

 werden dem

Farbraum-
transformation

Preflight

Farbzonen-
voreinstellung

Normalisieren

Trapping

Ausschießen

Formproof

RIPing

Bogen-Layout

Belichtung

Abbildung 3.8
Aktivitätendiagramm mit

Abhängigkeiten

25Kapitel 2

teren PS-Strukturen bestücken, so dass sie innerhalb ihres eigenen
Workfl ows Zusatzinformation, welche die CIP3-Organisation im PPF

nicht vorgesehen hat, transportieren können.

Diese privaten Erweiterungen stellen keine „theoretische Möglich-
keit“ dar, sondern werden in der Praxis vielfach verwendet, sowohl

im PPF, im PJTF als auch im JDF! Damit ist natürlich unter Umständen
die Kompatibilität zwischen den Systemen eingeschränkt. Deswegen
sollten diese privaten Einträge auch nur ergänzend sein und nicht die

standardisierte Information ersetzen. Wenn Workfl ow-Engines auf
private Erweiterungen stoßen und sie nicht verstehen, sind sie ange-
halten, sie zu ignorieren.

Zusammenfassend könnte man sagen, dass sich die drei Begriffe An-
passbarkeit, Standardisierung und Erweiterbarkeit teilweise gegensei-
tig widersprechen, und dass man versuchen muss, bei der Spezifi kation
von Jobticket-Formaten, aber vor allem auch in der Implementierung
von Workfl ow-Management-Systemen einen Kompromiss zwischen
diesen dreien zu fi nden.

21 Kapitel 2

tisch.

Anpassbarkeit

Das WMS-Modell muss sich den Arbeitsabläufen eines Betriebes an-
passen und nicht umgekehrt. Dieser scheinbar richtige Satz hat aber
seine Grenzen: Ein völlig chaotischen Arbeitsablauf will man gar nicht
modellieren. Die Forderung muss also besser heißen, dass ein WMS
beliebige, aber wohldefi nierte Produktionswege abbilden kann. In der
Tat ist die Festlegung der Produktionswege manchmal eine wichtiger
und schwierige Aufgabe bei der Einführung eines JDF-Workfl ows in
einem Betrieb.

Geschäfts- und auch Produktionsvorgänge laufen im Allgemeinen
zeitlich nicht nur seriell ab, sondern auch parallel, überlappend und
iterativ. Außerdem fi ndet man in Workfl ows häufi g auch Alternativen
(siehe Abbildung 2.6). Bei der Herstellung von Druckprodukten gibt
es für diese Situationen viele Beispiele:

Seriell: Erst drucken, dann falzen,...
Parallel: Texte und Bilder für ein Seitenlayout erstellen
Überlappend: Platten für einen Job mit mehreren Formen belich-

•
•
•

Abbildung 2.6
verschiedene Ablaufmöglich-
keiten von Geschäfts- und
Produktionsvorgängen

Prozess 1Prozess 2Prozess 3

Prozess 1Prozess 2

Prozess 3Prozess 4

Prozess 1Prozess 2Prozess 3

Prozess 1

Prozess 2a

Prozess 3

Prozess 2b

36Workfl ow-Modelle

grafi sche Eingabemasken, die in der Produktion von den Anwen-
dern ausgefüllt werden

eCommerce-Systeme, in denen der Auftraggeber Angaben über
Druckjobs machen kann

Die Workfl ow-Beschreibungen passieren also im Hintergrund, ohne

Zutun und größtenteils auch ohne Kenntnis der Anwender. Der (die)
Administrator(in) oder Techniker(in) der Hersteller/Anwender machen
die Vorgaben für die Grundwerte.

3.3 Bogenoffset als ein Prozess

Die Aktivitätenliste für einen typischen Druckjob sieht folgenderma-
ßen aus

Grundrüsten

Auftragstasche lesen

Papier bereit stellen
Papierlauf einstellen
Farbe in Farbkasten füllen

Einrichten

Platten wechseln
Bogen ziehen und optisch / messtechnisch kontrollieren

Register stellen
Farbe stellen

Fortdruck

Bogen ziehen und optisch / messtechnisch kontrollieren
Farbe nachstellen

Farbe nachfüllen
Papierstapel wechseln
Gummituchzylinder waschen

Auftragsende

Gummituchzylinder waschen
Ggf. Farbe wechseln

Auftragstasche ausfüllen

Ist es denn sinnvoll, hieraus vier Prozesse zu modellieren, nämlich

Grundrüsten, Einrichten, Fortdruck und Auftrag beenden? Oder sollte
sogar jeder Unterpunkt ein eigener Prozess sein? Letzteres ist sicher
nicht zum empfehlen, da die einzelnen Aktivitäten nicht unabhän-

gig von einander sind. Aber auch eine Einteilung in vier Prozesse ist
zweifelhaft, vor allem deswegen, da die Unterpunkte meist identisch

•

¥

•

•
•
•

•

•
•
•

•
•

•
•
•

•

•
•

33 Kapitel 3

Farbraum-
transformation

Preflight

Farbzonen-
voreinstellung

Normalisieren

Trapping

Ausschießen

Formproof

RIPing

Bogen-Layout

Belichtung und
Entwicklung

R18

R17

R16

R15

R14

R13

R11

R5

R7

R12

R4

R3

R2

R1

R8 R10R9

R21

R24 R22

R6

R23

R20 R19

Abbildung 3.9
ein komplexes Prozeß- und

Ressourcenmodell

Bezeichnung der Ressourcen:

R11 PDF-Seiten

R12 Prefl ight-Report
R13 PDF-Seiten
R14 normalisierte PDFs

R15 farbkonvertierte PDFs
R16 über-/unterfüllte PDFs

R17 Standbogen
R18 PDF-Bogen
R19 Datei für Formproofer

R20 Vorschaubild
R21 TIFF-B

R22 Formproof
R23 Farbzonenvoreinstell-
 werte

R24 bebilderte Druckplatte

24Grundlagen Workfl ow

besonders für das Jobticket-Datenformat. Doch was bedeutet eigent-
lich eine solche Eigenschaft für Datenformate?

Jobticket-Information werden gemäß den Regeln und Strukturen (der
„Syntax“) von anderen Sprachen / Dokumenstrukturen zusammenge-
stellt. Diese sind in der Praxis:

PostScript (PS)
Portabe Defi nition Format (PDF)

Extensible Markup Language (XML)

Wir werden in Kapitel 4 die Jobticket-Formate Print Production For-
mat (PPF) und Portabel Jobticket Format (PJTF) genauer analysieren.

Hier sei nur darauf hingewiesen, dass das PPF in PS und das PJTF in
PDF kodiert ist. Das Job Defi nition Format hat eine XML-Dokumen-
tenstruktur.

PS und PDF sind als Seitenbeschreibungssprache beziehungsweise als
Dokumentenstruktur in der grafi schen Industrie zur Seitenbeschrei-
bung wohlbekannt [23a] und [24a]. Beide können in ihrem Sprach-

umfang erweitert werden, das heißt, private Schlüsselwörter können
frei gewählt und optional bei der Firma Adobe Systems Incorporated
registriert werden (zur Vermeidung von Namenskonfl ikten). Wir wol-

len an dieser Stelle die Erweiterungsmöglichkeiten von PS anhand
eines Beispiels vorstellen. Das Verfahren beim objektorientierten PDF
verläuft ganz analog.

In PS können Variablennamen defi niert und mit Werten vorbesetzt
werden. Der Variablenname ist eine Zeichenkette, die durch ein vor-
gestellten Schrägstrich (/) gekennzeichnet wird. Das Schlüsselwort

def weist einer Variablen einen Wert zu. Zum Beispiel defi niert der
PS-Code

/hev /Helvetica-Bold def

eine neue Variable mit dem Namen hev, die den Wert Helvetica-Bold
hat. In diesem Fall dient die neue Variable einfach nur als Kürzel für
den längeren Originalnamen. Genauso kann man aber auch die Zei-

le

/CIP3PreviewImageWidth 1425 def

schreiben. Der Variablenname CIP3PreviesImageWidth ist in der PPF-
Spezifi kation defi niert und gibt vereinbarungsgemäß die Breite eines
Voransichtsbildes in Pixeln an. Genauso kann aber jeder eigene Vari-

ablennamen mit eigenen Werte erfi nden, wie zum Beispiel

/MeineErweiterung /ganz_toll def

Das ist gültiger PS-Code mit dem natürlich keiner etwas anfangen
kann. Aber Firmen können das PPF mit eigenen Variablen und wei-

•
•

•

0
8

-0
2
8

1
L

a
y

 - S
c
h

ö
n

d
ru

c
k
 - In

n
e
n

te
il

3
 - 1

8
.1

1
.2

0
0
8
 1

7
:4

3
:5

3
 - $

[c
o

lo
r]

CMY CMY B4 C4 M4 Y4 40% 80% B C M Y B C M Y 40% 80% B C M Y B C M Y 80% B C M Y B C M Y 40% 80% B C M Y

1

2

3

4

5

5

4

3

2

1

2

3

4

5

5

4

3

2

B C M Y 40% 80% B C M Y

1

2

3

4

5

5

4

3

2

1

2

3

4

5

5

4

3

2

B C M Y 40% 80% B4 C4 M4 Y4 MY CY CM B C M Y 40% 80% B C M Y CMY CMY B4 C4 M4 Y4 40% 80% B C M Y B C M Y 40% 80% B C M Y B C M Y 40% 80%

2212029181716151413121110198765432

Prinect/FOGRA 4 Dipco 2.1 Format 74 © 2004 FOGRA/Heidelberger Druckmaschinen AG

L
in

e
a
ris

ie
ru

n
g

: $
[L

in
e
a

riz
a
tio

n
C

u
rv

e
], P

ro
z
e
ß

k
a
lib

rie
ru

n
g

:

B

B

C

B

M

B

Y

B

X

B

Z

B

U

B

V

B

B

C

B

M

B

Y

B

X

B

Z

B

U

B

V

$[color]

Linearisierung: $[LinearizationCurve], Prozeßkalibrierung:

Schöndruck - 3

Lay

0
8

-0
2
8

1
L

a
y

 - S
c
h

ö
n

d
ru

c
k
 - In

n
e
n

te
il

3
 - 1

8
.1

1
.2

0
0
8
 1

7
:4

3
:5

3
 - $

[c
o

lo
r]

CMY CMY B4 C4 M4 Y4 40% 80% B C M Y B C M Y 40% 80% B C M Y B C M Y 80% B C M Y B C M Y 40% 80% B C M Y

1

2

3

4

5

5

4

3

2

1

2

3

4

5

5

4

3

2

B C M Y 40% 80% B C M Y

1

2

3

4

5

5

4

3

2

1

2

3

4

5

5

4

3

2

B C M Y 40% 80% B4 C4 M4 Y4 MY CY CM B C M Y 40% 80% B C M Y CMY CMY B4 C4 M4 Y4 40% 80% B C M Y B C M Y 40% 80% B C M Y B C M Y 40% 80%

2212029181716151413121110198765432

Prinect/FOGRA 4 Dipco 2.1 Format 74 © 2004 FOGRA/Heidelberger Druckmaschinen AG

L
in

e
a
ris

ie
ru

n
g

: $
[L

in
e
a

riz
a
tio

n
C

u
rv

e
], P

ro
z
e
ß

k
a
lib

rie
ru

n
g

:

B

B

C

B

M

B

Y

B

X

B

Z

B

U

B

V

B

B

C

B

M

B

Y

B

X

B

Z

B

U

B

V

$[color]

Linearisierung: $[LinearizationCurve], Prozeßkalibrierung:

Schöndruck - 3

Lay

161

98

413

512

Sheet layout Imposed sheet with content placed

30 Print Workflow Models

der the control of an operator,

usually with standalone soft-

ware on the desktop computer,

while the automated process

of imposition is performed on

a server in the background.

The activity diagram, which also

indicates the dependencies, is

seen in the example in Figure

3.8.

The corresponding process-

resource model is not only

much more accurate, but also

much more complicated (Figure

3.9). The processes are repre-

sented by rounded rectangles;

the resources are represented

by circles and distinguished as

blue (R
1
 to R

10
) and red (R

11
 to

R
24

). The blue resources are pure

input resources for the process,

while the red resources appear

as output resources. The blue

resources are basically param-

eter resources, the detailed in-

formation for the preparation

of the corresponding processes.

The RIPing resource, R
7
, by way

of example, contains informa-

tion about the raster process

(raster type, line screen, screen angle, etc.); the sheet layout re-

source R
5
 contains details about the imposition schema the bind-

ing type, sheet perfecting, etc.

To save space we must sacrifice an extensive description of all of the

details which can be found in the resources. The descriptions would

fill an entire book. The red resources are briefly listed in Figure 3.9.

It should be clear that the scenario described in Figure 3.9 is only an

example of a platemaking workflow, which is not, strictly speaking,

universally valid. We will also see in Chapter 12 that a completely

different way of working is typical in packaging production. And in

the naming of resources in Figure 3.9, we have made assumptions

that might not precisely apply. Thus, the description “PDF pages“

Color space
transformation

Preflight

Ink zone
presetting

Normalize

Trapping

Imposition

Form proof

RIPing

Sheet layout

Exposure

Figure 3.8

Activity diagram with

dependencies

31Chapter 3

Color space
transformation

Preflight

Ink zone
presetting

Normalize

Trapping

Imposition

Form proof

RIPing

Sheet layout

Exposure and
developing

R18

R17

R16

R15

R14

R13

R11

R5

R7

R12

R4

R3

R2

R1

R8R10 R9

R21

R24R22

R6

R23

R20R19

Figure 3.9

A complex process resource

model

Description of resources:

R
1
bis R

10
 Input parameters

of the respective

processes

R
11

PDF pages

R
12

Preflight report

R
13

PDF pages

R
14

Normalized PDFs

R
15

Color-converted

PDFs

R
16

Over-/under-

filled PDFs

R
17

Register sheet

R
18

PDF sheet

R
19

File from form

proofer

R
20

Preview image

R
21

TIFF-B

R
22

Form proof

R
23

Color zone

preset values

R
24

Imaged printing

plate

32 Print Workflow Models

was made for resources R
11

 and R
13

. It would be more generic, and

therefore proper, but somewhat cumbersome, to speak of a “page

description language formulated page sequence.“

The resource R
11

 would typically be the output of a page layout

process. Both resources R
22

 (form proof) and R
24

 (imaged printing

plates) are physical resources, not just data records but things that

have a physical quality. R
22

 often happens after a consultation with

the customer or is passed on directly to the printing process. Also

the resources R
23

 (color zone presets) and R
24

 will serve the print-

ing process as input resources.

In the model of Figure 3.9, you can also certainly see dependen-

cies in the process-resource model, but it doesn‘t describe a strict

sequence. It does not specify whether to first provide a form proof

and then produce a press plate or vice versa. The latter would, of

course, be absurd. In Chapter 9 methods are presented which

guarantee that proofs are duly made within the production chain

(approval process).

Now how finely graded should the process be? You certainly can

also define larger units, as shown in Figure 3.4. Naturally, you can

also deconstruct the workflow model in Figure 3.9 more finely still.

You could split up the process “Exposure and developing“ (with a

corresponding plate and a corresponding exposure) into: expose

plates, punching, preheating, chemical development, rinsing, gum-

ming, and burning. Yes, it would even be conceivable for one to

split the exposure process itself yet again into: pulling the plate

out of the stack, inserting the imaging drum, fastening, exposing,

and removing the exposed plate. And so you could always go into

more and more detail; a process could be illustrated up to the end

of each impulse on a step motor.

That would certainly be unreasonable. It is true, however, each pro-

cess in production, possibly triggered by themselves individually or

executed by a device or software, is a process to define. No one

positions even one plate on an imaging drum if it is not also fixed

and exposed; therefore, it would be meaningless to split the expo-

sure process. An exposure process and a developing process can

be defined and would thus be useful again. Conversely, the pro-

cess definition from Figure 3.4 would likewise not be appropriate

since more independent equipment and applications are involved

in plate production and in finishing.

The JDF model in fact looks very similar to Figure 3.9. However,

the RIPing process is, by way of example, even more finely broken

down and indeed is outlined like in Figure 3.10. It is easy to rec-

Screening

Interpreting

Rendering

R21

Bytemap

Display-List

R18

R7c

R7b

R7a

Figure 3.10

RIPing process

33Chapter 3

ognize that the process of RIPing was split into three processes:

Interpreting, Rendering, and Screening. Accordingly R
7
 was di-

vided into three resources: in the R
7a

 InterpretingParams resource,

in the R
7b

RenderingParams resource, and in the R
7c

 Screening-

Params resource.

We will explain the three terms only briefly (see Figure 3.11). The

interpretation process analyzes the page description language and

the data structures. In the InterpretingParams, there could, for ex-

ample, be an entry about whether the page should be adjusted

or scaled with respect to the size of the output medium. The re-

sult of the interpretations process is a (nonstandard) data structure,

called the DisplayList. The rendering process‘s next main task is to

fill in the closed contours which are mathematically defined in the

page description language. The result is a pixel structure, called

a Bytemap. The resolution of this pixel structure is an entry in the

RenderingParams. The resulting pixel structures have color depth,

which means the pixels may be comprised of different color shades.

The pixels are converted into a raster (bitmap) graphic within the

screening process either in a periodic raster (AM screen) or a non-pe-

riodic screen (FM screen). The information important for the screen

process (type, frequency, etc.) are entries in the ScreeningParams.

More detailed explanations about this process can be found as ex-

amples in [22] or in [29]. But why is RIPing divided up into three

processes? The reason is simply that the screening process doesn’t

always need to be carried to completion; perhaps it only needs to

be RIPed for the plate artwork or for a halftone proof but not usu-

ally for a digital print.

We want to point out again that this concerns the workflow model,

not the workflow itself. An output resource contains only the de-

scription of the exposed plates, not the plates themselves. Nev-

ertheless, this is referred to as a physical resource. However, in

order to keep it simple, this book does not often differentiate be-

tween model and reality. For example, we will continue to simply

speak of a “plate resource.”

Even the parameter resources must not necessarily be included di-

rectly in the workflow model. For example, a PDF file, which spec-

ifies the printing elements of pages or sheets, is not embedded in

a JDF file. Instead it only states where in the data system the PDF

file can be found. Therefore, there is only a reference to the PDF

file in the JDF file.

Perhaps you‘re asking yourself who actually composes the work-

flow model. Is it true that for each print order an operator must

Figure 3.11

Rendering and screening

process

Screening

Rendering

Interpreting

%!PS-Adobe-3.0
 ...
 311.784 430.92 mo
 283.437 430.92 li
 283.437 402.574 li
 311.784 402.574 li
 311.784 430.92 li
 ...
 0 0 0 0.5 cmyk
 ...
%%EOF

PS/PDF
(Fonts,

photos,
graphics)

Bytemap
(grayscale)

Bitmap

DisplayList
(object

parameters)
Rectangle
 283.437 x
 430.920 y
 28.347 a
 28.346 b
 0.5 K
 ...

34 Print Workflow Models

prepare a workflow so production can proceed more or less auto-

matically? If so, must he or she actually set all of the resources ex-

actly? And if that is actually the case, is that not a terrible expense?

Well, in actuality, this does not work. But then which sources supply

the workflow descriptions for a print job? The answer is that infor-

mation is automatically extracted in part from the following areas:

• Estimating/order management system

• Print data from the client

• Preset production parameters (base or default values)

• Graphical input forms which are filled out by the users in

production

• E-commerce systems, in which the client can provide

information about print jobs

The workflow descriptions occur then in the background without

help and mostly without the knowledge of the users. The manu-

facturer‘s or user‘s administrator or technician generates the re-

quirements for the base values.

3.3 The Sheetfed Offset Process

The activities list for a typical print job in sheetfed offset looks like

this:

Basic Setup

• Read the job jacket

• Prepare the paper

• Set up the paper path

• Fill the inkwells with ink

35Chapter 3

Offset press Press sheet

Color

Color
profile

Control
panels

Proof

Plates

Substrate

Printing
inks

Printing
parameters

Press
conditions

Figure 3.12

JDF model for offset

printing

Setup

• Change plates

• Printing, sheet pulling, and visual/measurement device control

• Adjust registration

• Adjust color

Production Run

• Printing, sheet pulling, and visual/measurement device control

• Color readjustments

• Refill ink

• Changing the paper pile

• Washing the blanket cylinder

Order Completion

• Washing the blanket cylinder

• Color change (if necessary)

• Filling out the job jacket

Does it then make sense to

model four processes here,

namely Basic Setup, Setup, Pro-

duction Run, and Order Com-

pletion? Or instead should each

point underneath be its own

process? The latter is certainly

not recommended, since each

individual activity is not inde-

pendent of each other. But a

division into four processes is

problematic mostly because

the points underneath are of-

ten identical or at least simi-

lar. The activities by Setup or by

Production Run are actually the

36 Print Workflow Models

same; only the outcomes are different: one is spoilage, the other

good sheets. Note that the schema of the job list is quite rigid. So

in practice the work is “dovetailed”; that is, during a production

job the printer is already readying the job ticket for the next job.

Also, all of the activities are not

absolutely mandatory. For ex-

ample, if the paper is known in

a print shop, the point “Set up

the paper path,“ as a general

rule, is not necessary.

In this respect the CIP4 Organi-

zation has chosen a very simple

process-resource model for off-

set printing, as shown in Figure

3.12. In order to distinguish be-

tween the individual activities

in offset printing, we speak of

“states” which the printing pro-

cess are in.

With digital offset (the printing

plates are imaged within the

press), and with inline finishing,

especially within roll-fed offset,

more processes are found to

take place within the press—

not just printing but also plate

burning, cutting, folding, etc.

It can be seen in the diagram in

Figure 3.12 that only some in-

put resources must be present;

others, such as a proof, are only

optional. You will also see that

the model essentially says very

little about the actual printing

process. If you want to illus-

trate this more precisely, create

a flowchart for yourself.

Figure 3.13 (left side) shows the main levels of the list of activities

as a flowchart, each of which is shown as a subroutine. The sub-

routine “Production Run” is shown again on the right side of the

diagram. But here we find the subroutines and one could again

create new flowcharts for “Sheet pulling“ and “Visual and/or mea-

Other
forms?

Start

Stop

yes

no

End of
job

Printing

Setup

Basic
preparation

Quantity
reached?

Start

Stop

Visual/device
control

Pull
sheets

Error?

no

Press
sheets

 no

yes

 yes

Make
corrections

Figure 3.13

Flow chart describing

sheetfed offset

37Chapter 3

surement device control.” So one can go into deeper and deeper

levels of detailed description.

3.4 Example Model of Postpress

Print finishing is too complex to develop an all-encompassing

model. A universal list of activities would be long and always in-

complete, so it does not make sense for us to keep putting one to-

gether. Instead we will only look at the process-resource model as

an example, namely the saddle-stitched brochure, in Figure 3-14.

Resource R
7
 constitutes the input to further processing, such as

the press sheets as they come out of the press room. Resources R
8

through R
13

 are descriptions of intermediate products which are

formed during postpress:

• R
7
 Press sheets

• R
8
 Signatures

• R
9
 Folded sheets

• R
10

 Blocks

• R
11

 Bound blocks

• R
12

 Trimmed blocks

• R
13

 Saddle-stitched products

Resources R
1
 to R

6
 are parameter resources, which keep the infor-

mation for the respective processes. We want to name a couple

of typical entries for each of these resources:

• R
1
 Position of the cutting blocks/cut marks, system

• R
2
 Folding sequence, fold position, system

• R
3
 Sequence of gathered components

• R
4

Number, position, width, angle, shape, and profile of the

wire

• R
5
 Width and height of the final product

• R
6

Maximum height and weight, number of layers per stack,

number of print products per layer

The size of the press sheet is not usually entered within JDF in R
1
,

but instead in R
7
. Also the paper properties, which are not partic-

Gather

Cut

Fold

R10

R9

R8

R7

R3

R2

R1

Stack

Stitch

3-knife
trimming

R13

R12

R11

R6

R5

R4

Figure 3.14

Process-resource model for

the production of a stitched

brochure

38 Print Workflow Models

ularly important for the folding process, are not entered In R
2
, instead in

resource R
8
.

We have now seen examples of workflow descriptions in the form of ac-

tivities lists, activities diagrams, flowcharts, and process-resource models

in the areas of prepress, press, and postpress. We believe that the process-

resource model is particularly suited to clearly and simply visualize com-

plex process flows. In contrast, a flowchart can be very helpful to illustrate

the “plot lines“ within a process. Activities lists are perhaps the easiest

to create, but allow the least information to be revealed. They also lead

to wild entries rolled together so that in the end an unstructured “brain-

storming” result remains left over.

Exercise:

Plan your next weekend with the help of a flowchart. Define alternatives

to activities if conditions are not able to be met.

Describe in detail the preparation of your favorite dish as a process-

resource model—and do not forget an appetizer and dessert!

39Chapter 4

4 History of Metadata and Its Application

The difference between content data (print data) and metadata

was discussed and defined previously in Section 2.4. Here, we will

present some examples of the corresponding applications.

We will begin in Section 4.1 with the EXIF format, which allows

technical values and calibration to be captured while shooting with

digital cameras. Also, we will present the IPTC (International Press

Telecommunications Council) standard for photos.

XMP stands for Extensible Metadata Platform and is specified

by Adobe for different image and document formats. The idea

behind the concept is the dissemination of information about the

application’s boundary. By way of example, metadata written in a

TIFF image file is not only in the InDesign document in which this

image is placed, but also in the PDF file that is exported out of In-

Design. So you may find copyright information about photos in a

PDF output file when reprinting even years later although the im-

age file has not been available for a long time.

In Section 4.2 Print Production Format shall be discussed in more

detail, having already been introduced briefly in Chapter 1 as an

important predecessor format to Job Definition Format.

The last section of this chapter is about another precursor to JDF,

the Portable Job Ticket Format (PJTF) from Adobe Systems In-

corporated. This format is closely tied with the obsolete, interim

Extreme RIP architecture from Adobe. This RIP architecture was

licensed for many years to many manufacturers of CTP workflow

systems and is often still found in the market.

The contents of this chapter are not directly required for the un-

derstanding of the other JDF-based chapters and may be skipped.

Because many workflow installations currently (still) use metadata

in Babylonian language diversity, especially JDF/JMF, PPF, and PJTF,

we have included the basics of classical metadata in this book.

Outside of this, it is entirely conceivable that XMP and JDF will to-

gether augment a workflow implementation.

4.1 Metadata for Photos and Documents

There are three main reasons why one provides photos with

metadata:

• Photos may be more easily identified and found in large

archives.

40 History of Metadata and Its Application

• Copyright infringement out of ignorance may be hindered by

copyright messages in the photos.

• A description of the technical details of the photos makes

the analysis of the camera settings possible afterwards and

also gives a quick overview of the suitability of the photos for

different applications.

The most important issues in the design of photo metadata is (1)

the definition of which information about the photos should be

recorded and (2) how this data is maintained when the format is

converted.

EXIF and IPTC

EXIF stands for Exchangeable Image File format and was devel-

oped by the Japan Electronics and Information Technology In-

dustries Association (JEITA) [27] especially for digital cameras. In

addition, scanning software makes some of this metadata avail-

able. For each photo that is taken with a digital camera, details

about the camera, the time the photo was shot, and the settings

at the time the photo was shot (exposure time, resolution, aper-

ture, etc.) are stored in the image file. With various applications,

this data may then be displayed and also modified and analyzed.

In Figure 4.1 you can see the EXIF data which was provided auto-

matically by the digital camera.

The EXIF specification Version 2.2 [28] defines many more fields

than the figure shows, such as copyright, comments, or GPS infor-

mation. It also describes the EXIF data structure for both JPEG as

well as TIFF image files. Indeed, other formats, including PDF, are

not supported. In order to carry over the EXIF entries in this for-

mat, the information is built into other structures as shown in the

following section about XMP.

EXIF information may be incorporated into TIFF and JPEG because

both data formats are extensible. The “T” in TIFF stands for “Tag”

(or “Tagged”). In fact, it says that each unit of information about

the recorded image (height, width, etc.) is recorded with a de-

fined value in the form of a positive integer. In total there are 215

(=65536) different tags available, and because only a few are doc-

umented now, many more additional tags may be defined [3]. For

JPEG images, the extensibility is realized through a similar technol-

ogy. The images compressed by the JPEG standard are normally

saved according to the JPEG File Interchange Format (JFIF) [20].

As with TIFF, the individual units of information are saved with iden-

41Chapter 4

tifiers which are called “segments” here and not “tags.” The num-

ber of EXIF data is, for example, 255.

Some digital cameras save their photos in proprietary RAW for-

mat. In this case, EXIF data is typically saved in a separate text file.

The International Press Telecommunication Council [26] is a

worldwide association, representing news agencies and national

newspaper associations. In the 1990s they defined a set of meta-

data properties to be applied to images, which in many aspects is

similar to EXIF and is generally known under the term Informa-

tion Interchange Model (IIM). Here, also, ownership rights may

be noted, but above all the images are described by keywords

(Figure 4.2).

XMP

In 2004, with the Extensible Metadata Platform (XMP) spec-

ification, Adobe brought out a broad sweeping specification [2]

which not only defined metadata for images, but also for docu-

ments of differing types. The idea for the specification is that meta-
Figure 4.1

EXIF data of a JPEG image

42 History of Metadata and Its Application

data, once entered, will remain despite format changes. This natu-

rally assumes not only that the embedding of metadata in a special

data format appropriate to the XMP specification is at all possi-

ble (like TIFF, JPEG, JPEG 2000, GIF, PNG, HTML, PDF, AI, SVG/XML,

PSD, PostScript, and EPS) but also that the applications which carry

out the format transformations alter XMP data.

In fact, XMP information is stored separately and outside of the

application files. Yet that is rather atypical and will at the utmost

be made in database entries.

The XMP data may belong not only to a complete document but

also to individual components of a document. One such situation

allows, for example, the graphics and images which are embedded

in a PDF document to be associated to their own XMP metadata.

Figure 4.3 illustrates this principle whereas Figure 4.4 represents

a page of this book in which the XMP information is visible. The

word “resource” is employed in the XMP language which may be

may be explained through XMP. A resource is either a document

or a meaningful component of a document. The XMP data can be

stored in XML syntax. Since we handle XML in the next chapter, it

Figure 4.2

IPCT data within a JPEG file

43Chapter 4

suffices to say here that XML is easily extensible in that one can

define new schemas, and therefore several schema can be used

simultaneously. Adobe has several predefined schemas, such as:

• Dublin Core Schema

• XMP Basic Schema

• XMP Rights Management Schema

• XMP Paged-Text Schema

• IXIF Schema for IXIF-specific Properties

The complete list can be found in [2]. Just a few of the exam-

ples of the many possible entries which can be realized through

Figure 4.3

XMP principle components

of a document

Document

XMP 1

Item 1

XMP 2

Item 2

Document XMP

Figure 4.4

XMP information of an

image within a PDF file

44 History of Metadata and Its Application

this schema are listed here. The Title and Language of a resource

are properties which are defined in the Dublin Core Schema.

The XMP Basic Schema makes it possible to capture information

about the creation date (CreateDate) or Application Name (Creator-

Tool) with which the resource was produced. The XMP Rights

Management Schema shows the ownership rights, and, for ex-

ample, with the XMP Page-Text Schema, the page numbers

(Npages) of a document can be recorded. In the EXIF schema most

of the EXIF entries are defined yet again under XMP. This allows

the metadata of the digital photos to be integrated into the XMP

structures as well.

Of course not only Adobe but other firms may also define such

schemas and then a few build vendor-specific information in the

data. Thus a workflow management system (WMS) vendor may

use the XMP options in order to convey metadata and control

their workflow. A further example of the options XMP offers is

shown in Figure 4.5. How a software vendor can wrangle its ap-

plication into an existing WMS is outlined here. In Step 1, for ex-

ample, the application outputs

PDF data out of the job order of

the WMS and saves the mem-

ory location of each file in an

XMP entry. In Step 2 the work

is carried out and thereby modi-

fies the PDF files. Lastly, the data

is then copied back again in the

original order of the WMS ac-

cording to the XMP entries.

In summary, the metadata that

we have covered—EXIF, IPCT,

and XMP—are descriptive, i.e.,

they describe properties of dig-

ital resources. Its core properties

are quite limited, but expansion

options, at least by XMP, are available. This type of metadata can-

not describe processes which are required to modify the data. Pro-

duction software may, of course, use the metadata in order to de-

cide on predetermined design alternatives. Since the metadata is

typically integrated together with the actual resource data in a file,

they are naturally limited to the production areas which handle dig-

ital documents, and therefore only prepress. Both of the metadata

formats which are handled in the next two sections are, in princi-

ple, completely different.

Step 2 Step 3Step 1

Figure 4.5

Third-party software within

a WMS

45Chapter 4

4.2 Print Production Format (PPF)

Back in the Introduction we presented the two most important

applications of PPF: transfer of data from prepress to the calcula-

tion of color zone settings for an offset printing press, as well as

for the calculation of cutting and folding programs for postpress

(finishing). In the “Extensibility” Section 2.6, we mentioned that

PPF is encoded in PostScript and

presented a very brief example.

With the help of the descrip-

tion of a press sheet in Figure

4.6, Figure 4.7 shows that PPF

information, in its logical struc-

ture, is built like a tree. The

sheet forms the root element,

all forks are tree branches, and

all of the data points that have

no branching are leaves. Pref-

erably, instead of leaves and

branches one would speak of

nodes. Each node, except for

the root element, is a child of

the parent node; all nodes ex-

cept the leaves are also parent

nodes. Since in a tree structure

each node only has one (a sin-

gle) parent, one usually uses the

technical term “parent” instead

of “parents.”

An important feature in the PPF

tree structure (and also with many other tree structures) is that of

Figure 4.6

Structure of a PPF file

Register MarksCut DataColor ControlPreview Image

Block 2Block 1

Block 4Block 3

BackFront

Sheet

Sheet

Front
Back

Preview Image

Color Control
Register Marks

Block 3

Block 4

Block 1

Block 2

Cut Data

Sheet

Front
Back

Preview Image

Color Control
Register Marks

Block 3

Block 4

Block 1

Block 2

Cut Data

Figure 4.7

Tree structure

46 History of Metadata and Its Application

inheritance. Children inherit all properties from their parent, but

they may also bear new values. Furthermore, they can also hold

new properties. As an example, the nodes “Front” and “Back”

are children of the “sheet.” The properties of the sheet, such as

the size (CIP3AdmPaperExtent) and the gram weight (CIP3Adm-

PaperGrammage), are inherited from it. Perhaps they also inherit

the property “screen type” (CIP3ADMTypeOfScreen), but either

“Front” or “Back” may override the screen type. Finally, it may be

that the screen type is not defined at all in the sheet, but instead

only in the two children.

Naturally more than one sheet within a PPF may be described; they

are children of another root element called the PPF Directory.

The tree structure in PostScript (PS) code incidentally is realized

through a clinch. Figure 4.8 shows the tree structure of Figure 4.6

in this way.

In Figure 4.9 we again see a

somewhat more detailed code

snippet from a PPF file. The first

and last lines each begin with

a percent sign, which in Post-

Script is a comment character.

This means the lines are only

PS comments and are not in-

terpreted by the PS interpreter.

The following lines are more

or less self-explanatory. The

paper format is given in DTP

points; it therefore has a width

of 1984,251968@2.54/72

= 70 cm and the height of

1417,32283@2.54/72 = 50 cm.

The gram weight is defined as

usual in g/m2, the paper color

in CIE L*a*b.

The best-known application for PPF is the color zone preset-

ting for offset presses. The PPF therein actually takes a relatively

modest role because it will save only the preview images (Pre-

view) of the separated assembled sheets and some additional in-

formation in PPF which allows special interface software to cal-

culate the zone values (see Figure 1.3). The zone preset values

are not part of the PPF standards. Figure 4.10 shows a part of

such preview images as PPF structure. The images themselves

CIP3BeginSheet

CIP3BeginFront

CIP3BeginPreviewImage ...

CIP3EndPreviewImage

CIP3BeginColorControl ...

CIP3EndColorControl

CIP3BeginCutData ...

CIP3BeginCutBlock ...

CIP3EndCutBlock

CIP3BeginCutBlock ...

CIP3BeginCutBlock ...

CIP3EndCutBlock

CIP3BeginCutBlock ...

CIP3EndCutBlock

CIP3EndCutBlock

CIP3EndCutData

CIP3BeginRegisterMarks ...

CIP3EndRegisterMarks

CIP3EndFront

CIP3BeginBack

CIP3EndBack

CIP3EndSheet

Figure 4.8

PPF example

47Chapter 4

are compressed by length and are coded in ASC1185. The

width (CIP3PreviewImageWidth) and the height (CIP3Preview

ImageHeight) is in pixels, the resolution (CIP3PreviewImages

Resolution is defined in pixels per inch (ppi). The latter is down to

50.8 ppi. The CIP3PreviewImageMatrix specifies the pixel direc-

tion; here it is defined from left to right and from top to bottom.

One can find the definition of matrix algebra (calculation) in the

PS and in the PDF specifications (see also the exercises at the end

of Chapter 9).

In fact, it is not enough to give only the preview data to the calcu-

lation software for the color zone preset values. Because normally

a change of tone values still occurs after the calculation of the pre-

view image for the assembled sheet. And after all, it is indeed the

Figure 4.10

Definition of a preview

image in PPF

CIP3BeginPreviewImage

%%Page: 1

%%PlateColor: Cyan

CIP3BeginSeparation

/CIP3PreviewImageWidth 1490 def

/CIP3PreviewImageHeight 1210 def

/CIP3PreviewImageBitsPerComp 8 def

/CIP3PreviewImageComponents 1 def

/CIP3PreviewImageMatrix [1490 0 0 -1210 0 1210] def

/CIP3PreviewImageResolution [50.800 50.800] def

/CIP3PreviewImageEncoding /Binary def

/CIP3PreviewImageCompression /RunLengthDecode def

/CIP3PreviewImageDataSize 515348 def

CIP3PreviewImage...image data

CIP3EndPreviewImage

CIP3EndSeparation

same for separations of Magenta, Yellow, and Black

CIP3EndPreviewImage

%!PS-Adobe-3.0

...

CIP3BeginSheet

/CIP3AdmArtist (Carl Cool) def

/CIP3AdmJobCode (8) def

/CIP3AdmJobName (8 Zustaende) def

/CIP3AdmPaperExtent [1984.251968 1417.32283] def

/CIP3AdmSheetName (FB 002) def

/CIP3AdmTypeOfScreen (amplitude modulated) def

/CIP3AdmPaperGrammage 100.0 def

/CIP3AdmPaperThickness 0.035 mm def

/CIP3AdmPaperColor [93.0 0.0 -3.0] def

/CIP3AdmCreationTime (Mon Dec 11 18:29:57 2006) def

 ...

CIP3EndSheet

%%CIP3EndOfFile

Figure 4.9

Details of a PPF file

48 History of Metadata and Its Application

tonal values that are important for calculating the ink zone preset

values. But who or what changes the tone values? For the produc-

tion of offset plates, the image, which indeed still has a color depth,

must be screened. However, usually only one tone modification is

made to the screens. By way of example, the tonal value modifi-

cation should match the tonal value of a standardized dot gain in

print. In the parlance of PS and PDF we call these curves trans-

fer curves, or, depending on the purpose, linearization curves,

process calibration curves, tonal value compensation curves,

or in flexo printing bump-up curves. In Figure 4.11 two transfer

curves and their descriptions in PPF are shown. It is always listed as

a set of coordinate pairs (namely x and T
(x)

), between which all of

the definitions of the remaining functional values are interpolated.

Curve A is a transfer curve that creates no tonal value changes,

while curve B reduces the tonal values in the middle tones.

A preview image and the transfer curves may be furnished by a

RIP, but not cutting, register, color, and fold marks, as they ar-

rive at the RIP only as meaningless common graphics. Only the

assembly software knows the meaning of these marks and can as-

semble the appropriate PPF Information. The positions for regis-

ter, color, and cut marks on the sheet will be specified in the PPF

file. However, instead of cutting marks, cutting blocks can also be

entered into a PPF file. In this case, no cutting sequences are de-

fined, but only certain panel sizes which must be cut as shown in

Figure 4.12. With the folding data, in contrast, folding sequence

can also be established.

So far, all of the PPF properties have been related to the print sheet.

After that, the scope of the format was also limited to version 2.1.

With version 3.0, which was released in 1998 and the last ver-

sion of this job ticket format released, broader product definitions

have been possible. It allowed even more subproducts to be de-

A /CIP3TransferPlateCurveData

 [0.0 0.0 1.0 1.0] def

B /CIP3TransferPlateCurveData

 [0.0 0.0 0.5 0.4 1.0 1.0] def

1,0

0,4

0,0 0,5 1,0

Tone T(x)

Tone x

Figure 4.11

Transfer curves in PPF

49Chapter 4

scribed within an overall product in a PPF file. Altogether, it was fol-

lowed with the introduction of “Product Operations” (/CIP3Product-

Operation) and “Product Parameter” (/CIP3ProductParams) of the

process-resource model, introduced in Chapter 3. A range of prod-

uct operations such as collating, stapling, smyth sewing, or the ex-

ecution of three-knife trimming are defined in 3.0.

In the examples presented, we were introduced to two PPF pro-

ducers, namely the RIP and the assembly software, as well as three

PPF consumers, namely the respective PPF interface module for

the printing press, the folding machine, and the guillotine cutter.

Therefore this unfolds into the theory of the structural image which

is shown in Figure 4.13. Unfortunately, in practice it is not so easy

for different PPF producers to generate a PPF file together. The PPF

specification also provides no guidelines on how it should be done

and no vendor-specific solutions. Consequently, one likely has more

to do with multiple PPF data per print order with a multi-vendor

workflow, assuming there are multiple PPF producers in the mix.

But because in some circumstances a PPF consumer needs infor-

mation from different PPF producers, the situation is somewhat

Cut lines for cut mark positions

Alternative cutting block

29.4 cm 5.0 cm /TopVerticalCutMark CIP3PlaceCutMark

29.4 cm 5.0 cm /LeftHorizontalCutMark CIP3PlaceCutMark

/CIP3BeginCutBlock

 /CIP3BlockTrf [1 0 0 1 1 4 cm 4 cm] def

 /CIP3BlockSize [29.9 cm 68.7 cm] def

 /CIP3BlockElementSize[10.1 cm 6.02 cm] def

 /CIP3BlockSubdivision [4 4] def

 /CIP3BlockType /CutBlock def

 /CIP3BlockElementType /Unknown def

 /CIP3BlockName (Block1) def

/CIP3EndCutBlock

Figure 4.12

Alternative options

for providing cutter

information in PPF

50 History of Metadata and Its Application

messy. A possible example is

the PPF printing press inter-

face that receives a preview im-

age from the RIP and position

information about the register

marks from the assembly soft-

ware. Thus the PPF workflow

is difficult to maintain with the

complexity of increasing func-

tionality: It must be set up with

a variety of hot folders and controlled in case of error. Archiving

the scattered PPF files is cumbersome.

Overall it is therefore perhaps not surprising that the PPF workflow

is often limited only to the passing of the RIP data for the color

zone information because the benefits (reduction of waste and

setup time) are very high in relation to the cost.

4.3 Portable Job Ticket Format (PJTF)

The Portable Job Ticket Format [6] from Adobe Systems, In-

corporated is the precursor format of JDF. This format is closely

linked to the Extreme RIP architecture that, like PDF, was devel-

oped by Adobe.

The idea of the Extreme RIP architecture is to define those func-

tions resident in the RIP as independent modules which are sup-

plied with the necessary metadata by PJTF. The modules convert

job tickets and are therefore called job ticket processors (JTP).

JTP examples are not only the classic tasks of a RIP—that is inter-

preting, rendering, and screening—but also additional functions

such as normalization, color space transformation, trapping, im-

position, calculation of the proof data, or creating a PPF file for

color zone presetting. The JTPs can run on one server, but also

on different servers in a distributed system. In many cases, the

trapping JTP is outsourced to its own server because it is a fairly

time-consuming process which requires much CPU and working

memory capacity (RAM). Multiple instances of JTP are also often

set up on one or more servers in order to improve the overall

throughput. Extreme RIP architecture was for many years the ba-

sis for most workflow management systems in the arena of CTP

and only gradually replaced by the new Adobe Print Engine tech-

nology beginning in 2006.

The JTPs are controlled from a coordinator module, which receives

the job tickets from the outside and distributes the information to

Figure 4.13

PPF producer and PPF

consumer

Interpret
preview, etc.

Interpret
folding data

Interpret
cut marks

PPF

RIPing

Create
layout sheet

51Chapter 4

the JTPs. In general, the layout sheet definition as well as the spe-

cific settings for the different JTPs are translated from client soft-

ware by the coordinator. A supplier of an Extreme RIP system can

integrate their own JTPs into the system or draw on the JTPs from

Adobe. In any case the coordinator must be licensed by Adobe. The

user cannot integrate foreign JTPs (for example, from other man-

ufacturers) into an existing system since the interfaces are not ex-

posed: only the contents of the PJTF file are specified, but not how

they flow into the JTPs (Figure 4.14)

The following items may be specified in PJTF:

• Data for order management (delivery addresses, press date,

etc.)

• Specifications of the printed sheet

• Calibration values for

processes in the area of

output workflow (preflight,

trapping, screening, etc.)

• Calibration values for the

processes of print finishing

The focus lies firmly on the impo-

sition layout specifications and

the CTP output workflow; all of

the other areas are in the spec-

ification have been somewhat

neglected.

In the previous sections it was

stated that the XMP format is

coded in XML and PPF is coded

in PostScript. PJTF is now based on PDF, which means that a PJTF

file is structurally a PDF file only with PJTF-specific keywords substi-

tuted. However, these keywords are unknown to Acrobat, so their

values cannot be displayed. A PDF file generally consists of a col-

lection of numbered objects and a cross-reference table in which

they are registered, where the exact location of each object is to

be found. Figure 4.15 shows a PJTF object with the number 13.

The object contains, similar to PostScript-coded PPF, a type of ta-

ble in which each line is always provided in the same structure: on

the left is a string, and on the right is the value of this string. This

structure may also be interpreted as a keyword (or variable name)

and value or also as an entry in a (rather peculiar) dictionary. In

PJTF

one
or more
servers

Set RIP
parameters

Create
layout sheet

JTP JTPJTP

Coordinator
RIP System

Clients

Figure 4.14

Architecture of the Extreme

RIP

52 History of Metadata and Its Application

fact, Adobe also named this structure “dictionary.” Each diction-

ary is framed by double angle brackets (<<and>>). The same is

true for PostScript and PDF.

Object 13 in Figure 4.15 defines details about trapping. The key-

words are defined in the PJTF specification. It is /BCL for Black Color

Limit and the indicated value of 0.95 for the limit, that each tonal

value of the color black over 95% should be flooded like the solid

tone black. And the key /ITO and the indicated value should be

images to other objects overfilled or under filled (ImageToObject-

Trapping). The trap width is marked with /TW and is given in 0.2

inches.

Like XMP and PPF, PJTF is also built in a tree structure. The refer-

ence between the nodes is realized through a reference from one

object to another. The reference is marked by an “R,” whereby the

object number is placed before the object with is being referenced.

We will now explore a specific branch, which defines a layout sheet.

Each rectangle in Figure 4.16 represents an object in the PJTF ex-

ample; each arrow symbolizes the reference to another object. The

IDs of the objects are marked in red above the rectangle.

The root element in PJTF is the object with the name JobTicket. It

refers to two objects, the JobTicketContent and the Audit object.

All of the changes to the PJTF file that are made during the course

of production are logged into the Audit object. The JobTicket-

Content object refers to, among other things, the Signature object,

in which sheets with the same imposition layout can be combined.

Not visible in the figure are further references to the JobTicketCon-

tent object, for example objects which specify the memory location

in the file system where the PDF files may be found and where on

the layout sheet marks are placed. The Signature object 79 con-

sists of two Sheet objects 60 and 78. This means, in the example,

that the signature contains two print sheets. The object Sheet with

the number 60 in turn references to two objects of type Surface

(surfaces), namely one for the Front (straight) and one for the Back

(wider), which are represented by the objects 57 and 46. Moreover,

there is a reference to the MediaSource object with the marking 59

in which data about sheet size, sheet color, etc., are found. Here

also the tree is not completely shown. Object 36 shows the Place-

dObject, which includes the characteristics of the side placehold-

ers such as position, size, and trim.

The actual code of Objects 79, 60, 46, and 38 is shown in some-

what reduced detail in Figure 4.17, and arrows more graphically

indicate where these references are. In the first line of each object,

13 0 obj

<<

/BCL 0.95

/ITO true

/TW 0.2

...

>>

endobj

Figure4.15

A PJTF object

53Chapter 4

its ID is defined and the dictionary is opened with <<. The second

line indicates what type of Object it handles: Signature, Sheet, Sur-

face, or PlacedObject. All other entries in the respective dictionar-

ies are object-specific and are not further explained here. As an ex-

ample, only the entry /CTM{0.0...0.0} in Object 38 should serve to

define, in the current transformation matrix, the size and posi-

tion of the side placeholders on the sheet. Each dictionary and any

object with the keyword “endobj” are closed with >>.

In summary, it can be said that PJTF will certainly be completely re-

placed by JDF, but currently some workflow management systems

still import PJTF layout sheets, for example.

Exercise:

Open a digital photo in Photoshop and fill out the file information.

Place the photo into InDesign.

Export the InDesign document to PDF.

Figure 4.16

Structure of a PJTF

document

JobTicket
Content

Job Ticket

Signature

Sheet

Surface
“Front”

Sheet

Placed
Object

Placed
Object

Placed
Object

Placed
Object

Surface
“Back”

Media
Source

Audit

79

60 78

57 4659

36 38 40 42

54 History of Metadata and Its Application

Examine the PDF file in Acrobat with respect to the XMP

data. Select the image and view the images properties in

the context menu.

Examine the PDF file using a suitable text editor such as

WordPad or MFC applications.

Search for “XMP” and examine the entries there.

79 0 obj <<

/Type /Signatur

/S{

60 0 R

78 0 R

}

>> endobj

...

60 0 obj <<

/Type /Sheet

/CP 1

/Fr 46 0 R

/B 57 0 R

/MS 59 0 R

...

>> endobj

...

46 0 obj <<

/Type /Surface

/PO{

38 0 R

42 0 R

...

}

>> endobj

...

38 0 obj <<

/Type PlacedObject

/D 0

/O 0

/CTM {0.0....0.0}

/Cl{127.5...506.4}

...

>> endobj

Figure 4.17

References between objects

55Chapter 5

5 A Brief Introduction to XML

Extensible Markup Language is, in fact, not a language; in-

stead it is more like a system to define a language, that is, a meta-

language (a language about a language). XML is also a standard

for defining the document types programs can exchange between

themselves. An example for such an XML document type is Job

Definition Format. That is the only reason we’re dealing with XML

here, so there is no need to treat the XML topic exhaustively in

this chapter. Instead we will only present the terminology needed

to understand JDF more easily. We will also not address the pros

and cons of XML in relation to other document structures (such as

PDF or PostScript) or compare to Standard Generalized Markup

Language (SGML) or Hypertext Markup Language (HTML). A

somewhat more exact, and much more complete, introduction can

be found as an example in [42].

In Section 5.1 we will illustrate the practical construction of an XML

document and explain terms such as elements, attributes, and val-

ues. Section 5.2 goes into definition of the options, the “vocabu-

lary,” of XML files which are combined into name spaces. Finally,

in Section 5.3, Commerce Extensible Markup Language (cXML)

is introduced, an XML-based standard for the electronic exchange

of business data. cXML, in turn, forms the basis for parts of the

JDF specification.

5.1 Construction of an XML Document

Generally, an XML file begins with the so-called “declaration,” a

prolog for the actual XML elements. This declaration can be recog-

nized because it is within angle brackets (< and >) or even question

marks (?). Additionally, in Figure 5.1, the specification of the ver-

sion of XML, namely 1.0, appears in the

declaration. Although version 1.1 was re-

leased in February 2004, version 1.0 is still

often used. The version number is docu-

mented via an attribute that consists of an attribute name (here,

version) and an attribute value bracketed in quotation marks (here,

“1.0”). The attribute value is assigned to an attribute name through

the equals sign (=). This is also called value assignment. Often

one speaks of an attribute, referring only to the attribute name,

saying, for example, “version.” The various attributes are sepa-

rated from each other by a space.

<?xml version="1.0" encoding="UTF-8" ?>

Figure 5.1

Declaration of an XML

document

56 A Brief Introduction to XML

The version attribute is obligatory and must always be in an XML

declaration—all other attributes are optional. This example also

shows the optional encoding attribute, which furnishes informa-

tion about the coding type of the present XML document. UTF-8

is an international coding based on the ISO/IEC-10646-norm with

at least 8-bit character width. UTF stands for UCS Transformation

Format and UCS for Universal Multiple Octet Coded Charac-

ter Set. The UTF character set is based on the better-known Uni-

code character set.

In most cases, the root element of the XML data structure comes

after the declaration. Within JDF, the root element is always an el-

ement with the name of JDF, which we will see in the next chap-

ter. Let us not worry about JDF for now and illustrate instead an-

other root element with the name of Contact. Elements are in a

sense the building blocks of the XML structure. Each element has

a name, for example Contact, Person, or ComChannel. Elements

are delimited by start tags and end tags, and the tags are identi-

fied with angle brackets. The start tag of the element Contact is

therefore <Contact>, the end tag is </Contact>. The end tag is sig-

nified by the forward slash (/). Elements may contain subelements,

so the element Person is a subelement, also known as a child el-

ement, of Contact. The three ComChannel child elements of Per-

son are referred to as siblings, and Person, Company, and Address

are sibling elements under Contact. The tree structure of the ex-

ample coding in Figure 5.2 is more clearly depicted in Figure 5.3.

Not all elements have explicit start and end tags. The Company el-

ement contains no further subelements and may therefore be writ-

ten without an end tag. However, a forward slash (/) must come

before the final angle bracket. Elements that have no further sub-

elements are usually identified as “empty.” As such, only empty

<Contact>

<Person FirstName="Carl" FamilyName="Cool" NamePrefix="Herr">

<ComChannel Locator="03475/101010“ ChannelType="Phone"

ChannelUsage="Private“ ChannelTypeDetails="Landline" />

<ComChannel Locator="03475/101011" ChannelType="Phone“

ChannelUsage="Business" ChannelTypeDetails="Landline" />

<ComChannel Locator="carl.cool@frisch.de

ChannelType="E-Mail" ChannelUsage="BusinessPrivate" />

</Person>

<Company OrganizationName="Frisch GmbH"/>

<Address City="Eisleben" Street="Am Kaltenbach 3" Country="Deutschland"

PostalCode="06295" />

<!--This is a simple XML structure, which also happens to be JDF code-->

</Contact>

Figure 5.2

XML elements

57Chapter 5

ComChannelComChannelComChannel

AddressCompanyPerson

Contact

Figure 5.3

Tree structure of XML

elements

elements may be written in the form <Elementname…/>. As you

can see in the example, empty elements may certainly contain their

own attributes.

Many, but not all, elements have attributes, as we see in the ex-

ample of Contact. Which property of an element must be writ-

ten as an attribute and which is defined as a subelement must be

defined by specifying a document type. In our example, the attri-

bute of the Person element could naturally also be defined simply

as an attribute of the Contact element. Then the Person element

would be superfluous and could be removed. Attributes and ele-

ments are case-sensitive. Also, not all characters are allowed in the

element or attribute names, such as spaces or XML-specific char-

acters such as angle brackets or the apostrophe.

Comments may be written in an XML document, which are de-

fined only for people to read and not to be processed by the XML

software. Comments begin with “<!--” and end with “-->” and

may go over multiple lines.

5.2 XML Name Space

Data exchange with XML documents by massive applications is

found in many fields. They go from descriptions of chemical mol-

ecules, the page description language XPS from Microsoft (XML

Paper Specification), to business-to-business (B-to-B) interfaces

for the exchange of business data like purchase orders, invoices,

and product catalogs. But how are the necessary structures, ele-

ment types, and their attributes defined for those purposes? This

Markup Vocabulary and the rules of how to use them are not

maintained from a central point; instead each may define their

own model. When XML documents are to be used for data ex-

changes between different software modules, agreement on the

58 A Brief Introduction to XML

Figure 5.4

Namespaces in XML

documentation

markup vocabulary is necessary. This naming convention is made

through the declaration of a name space in the XML document.

A name space is not necessarily declared in each XML document,

for example, when it is only for internal or even for private pur-

poses and no naming conflicts from double elements or double

attributes can occur. But within JDF documents, for the most part,

more name spaces are declared: one for the description and struc-

ture of all overall JDF elements and their attributes with respect to

the CIP4 specification, and also to designate private supplements

which the workflow vendor puts out.

An XML name space is declared by the xmlns attribute. The value

of the attribute is simply an identifier, specifically a Universal Re-

source Identifier (URI). This identifier, as shown in Figure 5.4,

generally looks like an Internet address, but actually refers to the

name of the namespace. A resource on the Internet can stand be-

hind the URI, but it doesn’t need to. In other words, the URI can

potentially be a Uniform Resource Locator (URL), but in general

it is not. The example shows how one can easily believe that the

first namespace declaration is a URL, while the second is only a URI

(the Internet address does not exist).

In the second declaration behind the attribute name xmlns a colon

separates the prefix HdM, where HdM only stands for “Hochschul

der Medien” (Stuttgart Media University). With the help of such a

prefix, it is then possible to associate element names or attribute

names to different name spaces. When a name space does not

contain a prefix, it is the default name space. In the example, the

ResourcePool element is a subelement of the JDF element. Both

element names stem from the default name space, which, given

without a prefix, is http://www.CIP4.org/JDFSchema_1_1, while the

element HdM:PrivateElement is associated with the second name

space with the prefix HdM.

The structure of an XML document type can be defined in a Docu-

ment Type Definition (DTD) or in an XML Schema; the schema

is more modern and offers wider-reaching possibilities. We do not

worry about the details as to exactly how the definition of a doc-

<?xml version="1.0" encoding="UTF-8" ?>

<JDF xmlns="http://www.CIP4.org/JDFSchema_1_1"

xmlns:HdM="www.hdm-stuttgart.de.com/schema/HdM"...>

<ResourcePool...>

...

</ResourcePool >

<HdM:PrivateElement... />

</JDF>

59Chapter 5

ument type is to be carried out. It is not important for the under-

standing of the relationships in this book. XML schemas are also

sometimes shortened with XSD (XML Schema Definition). The

file that contains the JDF schema is also named accordingly, “JDF.

xsd,” and may be downloaded from the CIP4 website. A schema

itself is again defined in XML and consequently coded as text; it

can be read and also edited with a normal text editing program

or with a browser.

The following are usually defined within a schema:

• Which elements are allowed in a document

• Which attributes are allowed in these elements

• Which attributes are obligatory and which are optional for an

element

• The parent-child relationships between the elements

• The data types for elements and attributes

• Frequencies of elements

• References between elements

XML documents must be well formed and valid. We take “well

formed” to mean compliance with the general XML syntax, while

validity can only be given if the additional rules which are defined

in the schema (or schemata) are met. The XML document must de-

fine under which schema or schemata it is structured.

A program which can read XML is called a parser or could be

called analyzer here: A parser only has the task of analyzing the

XML text in particular to examine if it is well formed. The parser

also checks the validity of the XML document, and so it is also re-

ferred to as validating parser. The advantage of the validating

parser is that XML documents, which are not constructed accord-

ing to the schemata, are immediately known and can be separated

out if need be. This reduces the risk that an XML document can-

not be processed correctly. A validating parser is to XML as a pre-

flight program is to PDF files.

5.3 Resource Description Framework (RDF) and XMP

The XMP format was covered in the previous chapter, which also

noted that it can be written in an XML markup language. This lan-

guage is called the Resource Description Framework (RDF) [44]

60 A Brief Introduction to XML

Figure 5.5

XMP coded in XML

and is also a system for the description of resources, especially on

the Internet. It’s used mostly for the storage of metadata for Inter-

net resources as well as for additional information which, in the

simplest case, should allow for more effective Web searches. Ad-

ditionally, it does more, namely around the concept of the seman-

tic Web, in which the meta information could be read and eval-

uated not only by search engines but also other programs, from

so-called Web agents.

Although RDF is not important for JDF, we still want to introduce it

briefly in order to describe the data presentation of XMP. We want

to examine Figure 5.5 in somewhat more detail, which shows an

RDF/XMP object in PDF format: the element <x:xmpmeta> is the

root element that has exactly one child element <rdf:RDF>. The

latter surrounds itself with three child elements <rdf:Description>.

20 0 obj

...

<x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP toolkit 2.9-9, framework

 1.6">

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:x="http://ns.adobe.com/iX/1.0/">

<rdf:Description rdf:about="" xmlns:pdf="http://ns.adobe.com/pdf/1.3/"

pdf:Trapped="False" pdf:Producer="Acrobat Distiller 7.0 (Windows)"

pdf:GTS_PDFXConformance="PDF/X-1a:2001"

pdf:GTS_PDFXVersion="PDF/X-1:2001">

</rdf:Description>

<rdf:Description rdf:about="" xmlns:xap="http://ns.adobe.com/xap/1.0/"

xap:CreateDate="2007-08-24T12:00:39+02:00"

xap:CreatorTool="PScript5.dll Version 5.2"

xap:ModifyDate="2007-08-24T12:00:39+02:00">

</rdf:Description>

<rdf:Description rdf:about=""

xmlns:dc="http://purl.org/dc/elements/1.1/">

<dc:creator>

<rdf:Seq>

<rdf:li>Carl Cool</rdf:li>

</rdf:Seq>

</dc:creator>

<dc:title>

<rdf:Alt>

<rdf:li xml:lang="x-default">

 test.indd

</rdf:li>

</rdf:Alt>

</dc:title>

</rdf:Description>

</rdf:RDF>

</x:xmpmeta>

...

endobj

61Chapter 5

In each rdf:Description element a separate name space is defined:

the first with the prefix pdf is saved to PDF files, the second with

the prefix xap goes to the authoring with respect to modifications

data of the file, the third with the prefix dc around the author and

title of the file which stands for “Dublin Core” (see Chapter 4).

A few lines in the example may still be unclear: the element

<rdf:Seq> describes an ordered list; each list entry is a <rdf:li> ele-

ment. The list here consists of only one entry. The element <rdf:Alt>

provides the possibility of specifying alternative values. Something

notable appears at once: the attribute rdf:about=””. RDF was, as

said, developed primarily in order to describe Internet resources.

The value of the attribute “about” then provides the URI of the cor-

responding resource in the Internet. Yet here one has an empty

string which, in the XMP example, doesn’t go with the metadata

of an Internet resource but with the metadata of a PDF file on the

local file system in which the XMP information within the PDF file

is saved.

5.4 Commerce Extensible Markup Language (cXML)

Product or service catalogs, bid requests, quotations, placed orders,

order confirmations, or invoices are sent back and forth between

business partners in business life. That occurs not only through let-

ters or emails but also through Web portals or other e-commerce

systems. In the graphic communications industry, the print buyer

and the print shop are, to put it simply, the business partners. There

are different approaches to describing these business transactions

through formal specifications. The CIP4 Organization responsible

for the Job Definition Format propagated an XML markup lan-

guage for this: PrintTalk. The current version of PrintTalk is 1.3.

While the details of a press product can be described with JDF, the

commercial transactions are published with PrintTalk. More specif-

ically, in a PrintTalk transaction the JDF description of a print prod-

uct can then be integrated. Both XML markup languages are also

closely entwined, and each has its specific tasks. This is what makes

e-business models like Web-to-print possible. Therefore, custom-

ers can specify print products in certain variations, communicate

business data, and place orders.

In Section 8.5 we will cover PrintTalk in more detail, but since Print-

Talk is based on the general Commerce Extensible Markup Lan-

guage (cXML), we want to briefly describe their basic functions

in this section.

62 A Brief Introduction to XML

<cXML>

<Header>

 Header Information

</Header>

<Request>

 Request Information

</Request>

</cXML>

Figure 5.6

cXML document structure

cXML documents contain commercial transactions and are built,

in principle, as shown in Figure 5.6. The root element is always

a cXML element that typically contains a Header element and a

Request element. The Header element contains information for

addressing the sender and the receiver. In addition, data for au-

thentication of the sender can be sent—in effect a password. The

framework for a header is shown in Figure 5.7. The From and To

elements identify the sender and the receiver of the cXML docu-

ment. The From and the Sender can, but need not, be identical.

Because the From element defines the logical sender of the doc-

ument, while the Sender element the defines the instance which

sets up the http-binding to the receiver, these can be different if

the cXML document are chan-

neled over large e-commerce

networks. Where required, the

password is then also entered

in the Sender element. The Re-

quest element in the example

is an order for an article. This

also has a general administra-

tive function: information like

the delivery address, the invoice

address, and information on tax-

ation and payment, for exam-

ple, can be entered in the Order

RequestHeader. The ItemOut

element contains details about

the items that are ordered.

The PrintTalk header is identical

to cXML, and the Request ele-

ment can also be found in Print-

Talk. It does not have the child

element OrderRequest, instead

one BusinessObject element.

Such an element describes the

transaction, like a request for

quotation, offer, etc. For some

BusinessObjects, such as in a

quote request, you can also find

the child element which stores

information about the desired

print product.

<cXML>

<Header>

<From>

 ...

</From>

<To>

...

</To>

<Sender>

 ...

</Sender>

</Header>

<Request>

<OrderRequest>

<OrderRequestHeader ...>

 ...

<ShipTo>

 ...

</ShipTo>

<BillTo>

 ...

</BillTo>

<Tax>

 ...

</Tax>

<Payment>

 ...

</Payment>

</OrderRequestHeader>

<ItemOut ...>

<ItemID>

 ...

</ItemID>

</ItemOut>

</OrderRequest>

</Request>

</cXML>

Figure 5.7

cXML document

63Chapter 6

6 Introduction to JDF

In the previous chapters you learned something about JDF. The

most important things are summarized here:

• JDF is a job ticket format in which technical data can be stored,

and which also supports the function of order management.

• JDF includes the functionality of PPF and PJTF.

• JDF is based on the process-resource model.

• JDF is based on XML.

In the first six sections of this chapter, JDF code is presented in

greater detail. These sections represent the basis for all of the chap-

ters thereafter. The last section will try to place more emphasis on

workflows, in particular the treatment of Interoperability Con-
formance Specifications.

This introduction to JDF should provide an overview into the prod-

uct descriptions and specifications of the production processes

that are possible with JDF. At the end of the chapter you should

be able to read and understand a typical JDF document. Of course,

this chapter can not replace the JDF specification, which contains

much more detail.

6.1 Construction of a JDF Document

For each print job in the JDF workflow, there is a minimum of one

JDF document which contains the metadata for the print job. As ex-

pected for an XML document, this JDF document has a tree struc-

ture. The root element of the tree, but also each branch and ev-

ery branch and every leaf, is referred to as a JDF node. Normally

a print job consists of several JDF nodes, whereby each node de-

scribes a defined portion of the job. Each JDF node is an XML ele-

ment that may itself have further subelements.

Naturally, it is not required to have exactly three hierarchical lev-

els as in Figure 6.1. There may be more or fewer levels. Any given

level can contain any required number of nodes.

Not all JDF nodes represent a process, just a few do. In general,

these are the leaves of the tree. In this respect, the JDF data struc-

ture is based only partially on the process-resource model, namely,

four different JDF nodes:

64 Introduction to JDF

• Product node (or also product intent node)

• Process group node

• Combined processes

• Process node

Through the product node, a manufactured print product with

its parts or subproducts is described. For example, a book is made

from the cover and content, so as a result, there are three JDF prod-

uct nodes; Book, Cover, and Content.

Process nodes define individual work steps for the production

of a print product or one of its parts. We have already gotten to

know the combined process of interpreting, rendering, screen-

ing, cutting, folding, gathering, stitching, trimming, and stacking.

Of course there are still many other processes, and they will be

presented further in the following chapters. Processes can also be

grouped or combined for different reasons. This type of JDF node

is then called process group node, as the case may be for com-

bined processes.

As an example, RIPing in Figure 3.8 could either be a process group

node or a combined process of the collected processes of interpret-

ing, rendering, and screening (see Figure 3.10). For the exact dif-

ferences between process group nodes and a combined process,

we refer to section 6.4

Platemaking in Figure 3.4 is another example of a process group

node, which contains the other processes of imposition, and

imagesetting. It also contains yet another process group node,

namely RIPing. One also sees that a process group node can con-

tain processes as well as other process groups (which itself groups

<JDF....>

 <JDF....>

 <JDF....>

 </JDF>

 <JDF....>

 </JDF>

 ...

 </JDF>

 <JDF....>

 </JDF>

 ...

</JDF>

JDF Node

JDF Node JDF Node

JDF Node JDF Node

Figure 6.1

Nested JDF nodes

65Chapter 6

further processes and process

groups). This is similar to cre-

ating a new group of individ-

ual graphic objects with previ-

ously grouped graphic objects

in drawing programs.

Figure 6.2 shows the relation-

ship between the JDF node

types, which is in no way com-

plete but is only intended as an

example. The red JDF nodes

specify the product nodes, the

gray nodes specify the process

group nodes, and the yellow nodes specify the process nodes. A

combined process is not available in the drawing.

It should be noted that these three node types do not necessar-

ily appear in each JDF document. So it is quite possible that a JDF

document may be made up of only one product node or out of

a product node and process group node. Yet a JDF document of

a complete print order cannot exclusively be made up of process

nodes, since processes must always refer to products or product

parts. In other words, the root element is, in this case, a JDF prod-

uct node, which represents the entire job.

During the preparation of a print product, the JDF document grows

as it goes through the JDF workflow. If the process nodes are miss-

ing at the beginning (because the processes are not yet clearly de-

fined), they are gradually added. The entries are, as described in

Section 3.2, generated in part through the production’s preset de-

fault values or through user input during production.

The JDF nodes do not exist in isolation but require resources. A

resource, as we have already seen in Section 3.2, is a physical

artifact (paper, plates, etc.) or an electronic unit (set of parame-

ters, file, etc.), which is input to or output from a node. Figure 6.3

shows the principle once more

in a very simple manner. But, as

we saw in Chapter 3, normally

there is a much more complex

network of resources and nodes

for the description of a work-

flow (see Figure 3.8). Certainly,

not only process nodes, but also

product nodes have resources.

Brochure

Printing
Layout

preparation
Platemaking

Cover Interior

Figure 6.2

The relationship

of the JDF node types

Product node (red),

Product Group node (gray),

and Process node (yellow)

JDF Node 2ResourceJDF Node 1
Output Input

ImagesettingBitmapScreening
Output Input

Figure 6.3

Relationships between JDF

nodes and resources

66 Introduction to JDF

They describe, for example, details about the allocation of paper

for a subproduct. One must therefore adopt the intuitive mindset

of the producer-consumer model, which was quite evident in the

processes. One can certainly still accept the idea that, for example,

print process plates are “used up,” but that a product node con-

sumes the paper specification like a cover.

But how are the resources struc-

turally interrelated with the JDF

nodes? Each JDF node not only

has attributes and their values,

but also first and foremost sub-

elements. Two subelements

are particularly important here:

the ResourcePool and the Re-

sourceLinkPool. The Resource-

Pool contains resources for the

JDF nodes; the ResourceLink-

Pool specifies which resources

for the JDF nodes are used and

whether, in each case, they con-

stitute input or output resources

for the nodes (Figure 6.4). Not

every resource which is speci-

fied from a JDF node must ex-

ist in the ResourcePool of this

node. In addition, resources

which appear higher in the tree,

that is closer to the root, and

contained in a ResourcePool of

another JDF node can also be

used. Therefore, processes can

share a resource without requir-

ing that they be implemented

twice (Figure 6.5).

It is not even mandatory that

any JDF nodes have a Resour-

cePool. However, each JDF node

must have a ResourceLinkPool

associated with it because the

ResourceLinks always refer to

the JDF nodes in which the

ResourceLinkPool is found. This

means, in the event a JDF node

Resource 1
...

Resource n

ResourceLink 1
...

ResourceLink n

Additional Elements

ResourcePool ResourceLinkPool

Root

ResourceLink 1
ResourceLink 2

Resource 1
Resource 2

JDF Node

Resource 3
Resource 4
Resource 5

ResourceLink 1
ResourceLink 4
ResourceLink 5

JDF Node

≈

≈

Figure 6.4

A JDF node

and subelements

Figure 6.5

Two JDF nodes access the

same resources

67Chapter 6

did not have a ResourceLink-

Pool, it would also have no re-

lationship to any corresponding

resource.

The structure of a JDF document

with a root element and a JDF

subnode typically looks like Fig-

ure 6.6.

6.2 Examples of JDF Nodes

Here, a JDF document will be

more closely examined. How-

ever, so as not to overload this

section, we have omitted many

elements and attributes and

present only some instructive

excerpts.

Figure 6.7 shows the first line of the XML prolog, as introduced in

the previous chapter. Subsequently follows the root element with

the name JDF, which is marked in red. The attribute names in the

code example are always colored in green.

The JDF nodes have multiple attributes which are briefly explained

here:

• Each JDF node must have a unique ID within the document.

• The value for the optional attribute DescriptiveName is a

human-readable identifier of the JDF node. In our example the

node is called “Frisch Advertising” because the JDF document

belongs to a print job that concerns an advertising brochure of

the Frisch GmbH company.

Figure 6.7

Typical attribute for a JDF

root element

<!xml.....!>

<jdf.....>

 ...

 <ResourcePool>

 ...

 </ResourcePool

 <ResourceLinkPool>

 ...

 </ResourceLinkPool

 <jdf.....>

 ...

 <ResourcePool>

 ...

 </ResourcePool

 <ResourceLinkPool>

 ...

 </ResourceLinkPool

 <jdf>

 ...

<jdf>

Relationship to
resources

Resources

Relationship to
Resources

Resources

<?xml version="1.0" encoding="UTF-8" ?>

<JDF ID="_4711" DescriptiveName="Frisch Advertising" JobID="_42"

Status="InProgress" Type="Product" Version="1.3"

xmlns="http://www.CIP4.org/JDFSchema_1_1">

<!-- Generated by the CIP4 C++ open source JDF Library version

 CIP4 JDF Writer Java 1.3 -->

…

</JDF>

Figure 6.6

Structure of a JDF with a

root and subelement

68 Introduction to JDF

• The value for the JobID is the identifier of the job, as the order

management system has provided it.

• The attribute Status is the current state of the JDF node is

reflected with the attribute Status. Besides InProgress there is

also a range of other statuses like Ready, Stopped, Completed,

Aborted, and others.

• The JDF node of the type Product behaves as a product

node and thus not a process node, a process group node,

or a combined process. A process group node is of the

type ProcessGroup, and a combined process is of the type

Combined. The type of a process node, however, identifies the

process more specifically such as Interpreting, Cutting, Folding,

or the like.

• The Version specifies the version of the JDF specification upon

which the JDF node is constructed.

• The xmlns attribute defines the XML name space (see Section

5.2)

After the attributes and values, follows an XML comment that in-

dicates how, with which computer language (C++), and in which

program library (CIP4 JDF Writer Java 1.3) the document was com-

posed.

We want to follow the Frisch Advertising brochure example fur-

ther. Initially we have the ResourcePool and the ResourceLinkPool

of the root element, of which Figure 6.8 only shows a part. The

CustomerInfo is the first resource in the pool, in which the data

Figure 6.8

ResourcePool with a

CustomerInfo resource

<ResourcePool>

<CustomerInfo ID="_4712"= CustomerID="_0815" Class= "Parameter"

CustomerJobName="Frisch Advertising" Status="Available" />

<Contact ContactTypes="Customer">

<Person FirstName="Carl" FamilyName="Cool" NamePrefix="Herr">

<ComChannel Locator="03475/101010“ ChannelType="Phone"

ChannelUsage="Private“ ChannelTypeDetails="Landline" />

 ...

</Person>

<Company OrganizationName="Frisch GmbH" />

<Address City="Eisleben" Street="Am Kaltenbach. 3“

Country="Deutschland" PostalCode="06295" />

</Contact>

 ...

</CustomerInfo>

 ...

</ResourcePool>

69Chapter 6

about the client is stored. Each resource requires, just like any JDF

node, a unique ID. Moreover, we also see within the attribute Class

that it handles a Parameter resource. Information about people is

in the JDF jargon, namely from the Class parameters, and is not

physical as one might expect. Finally the Status of the resource is

set to Available, and is therefore usable. As a subelement, we see

Carl Cool again, as used as the sample Contact in the last chapter

(Figure 5.2). Of course other contact names could be noted, for

example if the billing or shipping address is different.

The ResourcePool contains additional resources. Figure 6.9 shows

the Component and DeliveryIntent resources. The Component re-

source is required for each JDF root element because it represents

the end product to be produced. Quantity is specified as a Class,

which is a possible subtype of physical resources. The final prod-

ucts are countable, in contrast to the example of the physical re-

source Ink.

The DeliveryIntent resource describes how and when the final prod-

uct will be delivered to the customer and also, where appropriate,

where and how. In our example not much is entered. It involves

a delivery only because the DropIntent is specified and the Drop-

ItemIntent is recorded as 2000 copies.

The most significant line, however, is the reference to the Compo-

nent. It means that the delivery or the pickup relates to the end

product. The rRef attribute generally stands for a reference to a

resource; in this case the resource is 4713, which is the ID of the

final product.

In Figure 6.10 you can see the ResourceLinkPool, or the informa-

tion about which resources relate to the JDF nodes and whether

they handle input or output resources for the node.

The relationship between the individual ResourceLinks and the re-

source itself is simple. Should a ResourceLink be defined to a re-

<Component ID="_4713" Class="Quantity" ComponentType="FinalProduct"

DescriptiveName="Frisch Advertising" Status="Unavailable" />

...

<DeliveryIntent Class="Intent" ID="_4714" Status="Available">

<DropIntent>

<DropItemIntent Amount="2000">

<ComponentRef rRef="_4713" />

</DropItemIntent>

</DropIntent>

</DeliveryIntent>

Figure 6.9

Resource of the root

element

70 Introduction to JDF

source, for which it has the name XYZ and the ID 333, then one

chose XYZLink as a name for the ResourceLink and assigns the

Reference with rRef=”333”. The example is set up so that the

DeliveryIntent input resource and the Component output resource

are immediately evident.

We still have not explained two more input references (on resource

4715 and 4716) in the example. The JDF root element has two JDF

subnodes in which the first is a cover and the other represents the

content pages of the product. Both products are described further

through Component resources because the cover and the content

pages are required to produce the final product. The components

are consequently input resources for the final product.

The JDF subnodes each have their own ResourcePool again and

each has its own ResourceLinkPool. There will also be details about

the subproducts: Which paper should be used? What about the

color? How many pages will likely be included in the subproduct?

The LayoutIntent resource provides details such as the preferred

size of the final format and the number of pages; the MediaIntent

Resource describes the paper characteristics (Figure 6.11). If the

project manager or CSR inputs this information into an MIS, often

all of the details are not completely clarified. For example, it could

be that the exact number of pages is not yet fixed or the pound

weight of the paper sheet has been only approximated. Therefore

these resources are allowed a certain degree of range. Intent refers

to a “Project” and that is exactly what is described in these Intent

resources. One finds Intent resources only ever in product nodes,

which are also often called product intent nodes.

It is clear that these two re-

sources are not for the final

product—instead they are, to

stick with our example, defined

separately for the cover and the

contents. This must be so be-

JDF Product
Cover

Component

MediaIntent

LayoutIntent

<ResourceLinkPool>

<DeliveryIntentLink Usage="Input" rRef="_4714" />

<ComponentLink Amount="2000.0" Usage="Output" rRef="_4713" />

<ComponentLink Usage="Input" rRef="_4715" />

<ComponentLink Usage="Input" rRef="_4716" />

</ResourceLinkPool>

Figure 6.11

Separate JDF subnode

“Cover” with its own

ResourceLinks

Figure 6.10

ResourceLinkPool

71Chapter 6

cause naturally, as a general rule, both parts use different types of

paper, different colors, and so on.

Figure 6.12 shows the MediaIntent Resource for the cover. The re-

source is from the Intent class. Please note that the two subele-

ments are Dimensions and Weight.

The values of both the attributes Actual and Preferred in the Di-

mensions element are identical. This is the paper size in DTP points.

Only when you divide the value by 72 and then multiply by 2.54

do you come to the more familiar measurements in centimeters

(here 86261 cm). Preferred shows the desired value of the client;

Actual contains the intended value of the print shop. Both values

here are obviously the same.

The customer’s desired basis weight in Grams per Quadrameter

is recorded in the Weight attribute. One can see that a possible

range is named from 115 to 125 g/m2, with the Preferred value

at 120g/m2.

An XML parser must naturally be told that it must handle a num-

ber range with the value “115 ~ 125.” This happens because the

data type is defined as NumberSpan, the element Dimension is

the same data type, XYPairSpan, which means it can be defined

as “a range of numbers”: The paper size of Width1 2 Height1

to Width2 x Height2. However, in Figure 6.12 this is not used; in-

stead it is given only a fixed paper size.

In addition to the ResourcePool and the ResourceLinkPool, each

JDF node can be comprised of another pool, which we have sup-

pressed so far, namely the AuditPool. In this pool the log entries

are written so that after production has ended there is a record of

the creation of the print product. Not only are the modifications to

the JDF document itself noted, but so is the information about the

JDF process. So the various operations, for example, on the print-

<JDF DescriptiveName="Cover" ID="_4715" Type="Product" >

<ResourcePool>

<MediaIntent ID="_4717" Class="Intent" Status="Available"

DescriptiveName="Paper for Cover">

<Dimensions Actual="2437.7952755905512 1729.1338582677165"

DataType="XYPairSpan"

Preferred="2437.7952755905512 1729.1338582677165" />

<Weight DataType="NumberSpan" Range="115 ~ 125" Preferred="120" />

</MediaIntent>

</ResourcePool>

<JDF>

Figure 6.12

MediaIntent resource with

information about the

intended substrate

72 Introduction to JDF

ing press can be entered (plate changes, blanket washing, good

print, etc.) so long as these values are reported accordingly by the

press. Here is the general (but still incomplete) list of records (Au-

dit elements) available in the AuditPool:

• Generation, changing or deletion of a node

• Process times (start, end…)

• End status (Completed, Aborted, Stopped…)

• Error

• Used or missing resources

The MIS could then make a final cost analysis of the print job with

the contents of the AuditPools.

Figure 6.13 shows a very basic AuditPool, in which the entry only

records where and by whom the node was created. Here ...

• AgentName is the name of the software that created the JDF

node.

• AgentVersion is the version of this software.

• Author is the person (the PC user) who created the nodes.

• TimeStamp is the point in time of the generation of the nodes.

The node was created on October 22, 2008, at 17:09. The 47

provides the number of seconds and the +01:00 is the time zone,

which is the difference from Greenwich Mean Time.

6.3 Partitioned Resources

For some resources, there is a problem. For example, are all of the

printing plates for a print job one resource or is each plate its own

resource? The situation with press sheets can be more complex.

On one hand, it sometimes makes sense to see the entirety of all

of the sheets from a subproduct (such as a cover or inside pages)

when it comes to paper specifications. On the other hand, from

<AuditPool>

<Created AgentName="SuperJDF" AgentVersion="1.0" Author=" Administrator"

ID="_4717" TimeStamp="2008-10-22T17:09:47+01:00" />

</AuditPool>

Figure 6.13

AuditPool

73Chapter 6

time to time single sheets must be counted, for example for de-

termining the number of waste sheets.

Assigning each sheet as an individual JDF resource would create

huge documents and clearly would be absurd. So it is better to

have a resource for all of the press sheets, but a resource that

when in doubt can be split into individual components (partition-

ing). One therefore requires portioned (more accurately, partition-

able) resources.

Naturally, how these resources are structured must be specified.

In Figure 6.9 the resource Component was presented. It should

now be extended as a partitioned resource—even if the example

(Figure 6.14) appears at first to seem absurd.

The only new addition to the resource Component with ID 4713

is the attribute PartIDKeys.

The associated value effec-

tively demonstrates the anal-

ysis segmentation rule—or to

put it another way, a key to

partitioning. In this case the

press sheets are divided, like

actors in Hollywood films,

into two categories: good

and bad. Both of the child

components, and the sub-

elements of the surrounding

parent components, assume

all parental attributes

In the last example the clas-

sification was only one level,

but certainly in many situa-

tions one must divide it into

multiple levels. Let us take

plate burning as an example.

The total of all of the plates

for a print job, as Figure 6.15

shows, is divided into four

<Component ID="_4713" Class="Quantity" ComponentType="FinalProduct"

DescriptiveName="Frisch Advertising" Status="Unavailable"

PartIDKeys="Condition">

<Component Condition="Good" IsWaste="false" />

<Component Condition="Waste" IsWaste="true" />

</Component>

Figure 6.14

Partitioned resource

Cyan Magenta Yellow Black

BlackFront

Sheet mSheet 1

Signature 1 Signature 2

Exposed Media

Signature m

Sheet 2

Figure 6.15

Component resources in

the Plates example

74 Introduction to JDF

levels. The printing plates (ExposedMedia) can be split into multi-

ple signatures (SignatureName), each signature into more sheets

(SheetName), each sheet into front (Front) and back (Back), and

each sheet side (Side) into one or more separation(s).

Figure 6.16 shows just such a partitioned resource. The list

SignatureName SheetName Side Separation now stands in the

PartIDKey, exactly according to the layout in Figure 6.15. The se-

quence of the PartIDKey list may not be changed but must always

go “from top to bottom.” The rule can be more precisely stated

as: The shorter the chain of predecessors to the root element, the

further left the element in the list should stand. The same hierar-

chy must also be respected with the nesting of the subelements

of the partitioned resources.

In the example in Figure 6.16 the front side from Sheet1 is CMYK

and the back side is only black.

6.4 GrayBoxes and Combined Processes

There are a variety of reasons why it would be desirable to merge

several processes to a new structure:

• Particularly at the beginning of production, individual

processes are not yet firmly specified. It is then helpful to

consider initially large production sections as a whole. Without

that, the intermediate results among the processes within the

sections must be stated. But in the course of the production

run the intermediate results are defined.

<ExposedMedia Class="Handling" ID="_4718" PartIDKeys="SignatureName SheetName

 Side Separation" Status="Unavailable">

<ExposedMedia SignatureName="Signature1">

<ExposedMedia SheetName=" Sheet1" Status="Unavailable">

<ExposedMedia Side="Front">

<ExposedMedia Separation="Cyan" />

<ExposedMedia Separation="Magenta" />

<ExposedMedia Separation="Yellow" />

<ExposedMedia Separation="Black" />

</ExposedMedia>

<ExposedMedia Side="Back">

<ExposedMedia Separation="Black" />

</ExposedMedia>

</ExposedMedia>

...

</ExposedMedia>

...

</ExposedMedia>

Figure 6.16

Partitioned resource

75Chapter 6

• If a machine or software runs multiple processes in succession

without anyone processing the intermediate results, it is

unnecessary to specify them individually. This can, for example,

be the case with an integrated digital press where the

processes of interpreting, rendering, screening, digital printing,

stitching, and trimming all follow each other. But the two

processes of PreviewGeneration and InkZoneCalculation can

also merge into a combination in prepress for offset printing

(see Section 10.1).

The first case leads us to the GrayBox concept, the second to a

combined process.

A GrayBox is one or more process group node(s) in which the de-

tails are not yet specified. During the course of production the de-

tails are added. When all of the processes and resources are avail-

able, the GrayBox is finally closed because they cannot themselves

be listed like the actual processes. Typically, an MIS creates one or

more GrayBox(es). Because, as a general rule, not all of the required

production parameters are specified—for example, an MIS can de-

termine how many plates in which format must be produced, but

not the individual steps as to how they are manufactured—an MIS

usually contains no exact trapping or raster information, since they

are not required for estimating. The missing settings will be added

either through default values in the workflow modules, through

specifications in the print job, or by the data from the operator.

In the schematic in Figure 6.17 one sees that a GrayBox may cer-

tainly have input and output resources. The output resources must

actually be specified. Figure 6.18 shows an example of the GrayBox

which specifies offset plate production (platemaking). It comprises

five (or more) input resources

and one (or more) output re-

sources. Since we also need the

resources listed in the following

chapters, they are briefly pre-

sented here:

• A RunList is an ordered set

of page descriptions, so that

the content data is listed as

a RunList (provided in Figure

6.18 with the addition

of “Document”), but also

the marking data that are

Figure 6.17

A GrayBox is resolved

during the course of

production

Process 2Process 1

GrayBox

Advanced Production

76 Introduction to JDF

required for the imposition layout (in Figure 6.18 with the

addition of “Marks”).

• The Layout resource describes the layout or the layout sheet

(imposition sheet).

• ColorantControl sets the color definitions (which color space,

which colors, etc.).

• Media characterizes the printing plates (size, product name,

etc.).

• ExposedMedia is, in this case, the exposed plates.

The code for platemaking is shown in Figure 6.19. Process group

nodes of the type GrayBox are always known by the combination

of the Type and Types attributes. The value of the attribute Type is

ProcessGroup, and the value of Types is a list of processes which are

included by the GrayBox. Note

that RIPing is actually not de-

picted as a process, but is itself

again a process group node.

There are incidentally also pro-

cess group nodes which do not

have the function of a Gray-

Box. The Types attribute is con-

sequently missing and the Type

attribute as the value Process

Group. This type of process

group nodes contains processes

as JDF nodes.

Processes not only can be

grouped but also be combined. The result of such a combined pro-

cess is itself an additional process. It contains a list of process names

<JDF Type="ProcessGroup" Types="Imposition RIPing ImageSetting"

DescriptiveName="GB PlateMaking" ...>

...

<ResourceLinkPool>

<RunListLink ProcessUsage="Document" Usage="Input" ... />

<RunListLink ProcessUsage="Marks" Usage="Input" ... />

<LayoutLink Usage="Input" ... />

<ColorantControlLink Usage="Input" ... />

<MediaLink Usage="Input" ... />

<ExposedMediaLink Usage="Output" ... />

</JDF>

GrayBox
Platemaking

Exposed
Media

Colorant
Control

Media

Layout

RunList
(Marks)

RunList
(Document)

Figure 6.18 (above) and

Figure 6.19 (below)

Example of the GrayBox

offset platemaking

77Chapter 6

and the required resources. Figure 6.20 shows that in this case the

value of the attribute Type is Combined, while the processes are

listed out within the value of Types—similar to a GrayBox.

A combined process is similar in concept to a process group. The

difference is that a combined process is from a single device, and a

process group is generally executed from multiple devices. For this

reason, resources, which only describe the intermediate results of

the process, must not necessarily be listed in a combined process.

CombinedProcessIndex is actually the only new attribute in Fig-

ure 6.20. The values indicate which processes specified under

Type stand in relation with the resources. It is counted from zero,

which means the first process in the list, namely Imposition, has

the index of 0, the second (Interpreting) has the Index 1, and

the third (Rendering) has the Index of 2. Consequently the re-

sources RunList and Layout are input resources for Imposition,

InterpretingParams are input resources for Interpreting, and the

RenderingParams are input resources for Rendering.

6.5 JDF Workflow Architecture

Now that we have seen in principle how a JDF document is built,

we will examine how these documents get to the workflow

modules.

The simplest possibility is the sequential relaying of information,

which is sketched out in Figure 6.21. This very simple model is not

realistic, or a best-case scenario only in very simple production en-

vironments, in which two or three neighboring process exchange

<JDF Type="Combined" Types="Imposition Interpreting Rendering"...>

<ResourcePool>

<RunList ID="_100"... />

<Layout ID="_200""... />

<InterpretingParams ID="_300" ... />

<RenderingParams ID="_400" ... />

...

</ResourcePool>

<ResourceLinkPool>

<RunListLink CombinedProcessIndex="0" Usage="Input" rRef="_100" />

<LayoutLink CombinedProcessIndex="0" Usage="Input" rRef="_200" />

<InterpretingParamsLink CombinedProcessIndex="1" Usage="Input"

rRef="_300" />

<RenderingParamsLink CombinedProcessIndex="2" Usage="Input"

rRef="_400" />

...

</ResourceLinkPool>

</JDF>

Figure 6.20

Example of the combined

process offset platemaking

78 Introduction to JDF

JDF information. Example: assembly software (Stripping) creates

a JDF document for imposition (Imposition).

A more realistic model is the central JDF data repository

to which the different workflow modules have access, as

shown in Figure 6.22. This data store can either be a data-

base or a simple folder structure on a file server. Naturally

the individual workflow engines are not completely free to

access the JDF data, only under the administration of a spe-

cial higher-level software which controls the consistency of

the data. In contrast to the sequential situation, the data is

stored on a central server which is advantageous in terms of

data backup. Figure 6.22 suggests that JDF administration is

a piece of the production software. But there is also the MIS-

centric, central data handling that Figure 6.23 exhibits. Inciden-

tally it is not necessarily the case that only one JDF document is

generated per order. For, instead of always filling this document

with current data, each of the workflow modules can also gen-

erate new versions of the JDF document. So one could, in the

event of a failure, at least in theory, turn back to an earlier state.

However, to prevent a possible misunderstanding: Naturally, in a

JDF environment not all of the data for production of print prod-

ucts is stored somewhere in JDF format. In fact, for example, an

MIS will continue to operate with its own database tables and

data sets, in which all of the data is also stored, which are not

mapped in the JDF (such as cost of equipment and operations).

JDF/JMF is also not the only external interface. The same sam-

ple also applies for prepress, press and postpress.

The CIP4 Organization suggests an additional hierarchical model,

which is given in Figure 6.24 as an example. This model works;

however, it is less concerned

with the data store and more

concerned about how the func-

tions may cover the JDF soft-

ware. The following terminol-

ogy applies:

• An Agent can

generate a JDF document,

generate and modify a JDF

node. Typically an order

management system performs

the Agent role.

Order management
(MIS)

Press control
station

RIP and
output

Cutting

Data
preparation

Folding

Figures 6.21 and 6.22

Sequential transmission (above)

central administration (below)

Plate
exposure

Press control
station

Digital
imposition

Order management
(MIS)

79Chapter 6

• A Controller has the task

of relaying JDF documents

and also JDF messages to

the devices. Conversely, it

should also report messages

back to the Agent from the

devices.

• A Device interprets the JDF

nodes and initiates the

corresponding actions in

the connected machine.

The Device-Machine

communication is not based

on JDF/JMF, but is instead vendor-specific. In IT jargon, one

would also call a Device a “JDF device driver.”

• A Machine carries out one or more processes without

themselves understanding or producing JDF or JMF.

The division is not always absolutely clear. Many controllers and

devices may produce and modify JDF nodes; therefore, they have

Agent capabilities. Also, a controller will often be an Agent and a

Controller simultaneously, as is the case with some order manage-

ment systems. This JDF architecture then has three levels, which

means that the Agent (the MIS) is also the universal Controller. The

division into three Controllers in Figure 6.24 is only an example; it

could be more or less one Controller. Finally Controllers can work

recursively; a Controller can handle one or more sub-controllers.

At the same time, one Controller can route data using the follow-

ing methods:

• One Controller sends the complete JDF job to all devices in

turn.

• The Controller determines by JMF which device can handle

which processes and sends the respective part of the JDF job

to the devices.

• As in the last point, only the properties of the device are

“hardwired” in the Controller; i.e., they are strictly defined.

In the last two bullet points, parts of the JDF nodes must be sep-

arated out. We will discuss the technology for this purpose in the

next section.

Figure 6.23

The MIS is responsible for

JDF communication

Order management
(MIS)

Press control
station

RIP and
output

Cutting

Data
preparation

Folding

80 Introduction to JDF

The combinations of devices and equipment were called “job ticket

processors” or also “workflow engines” in the last chapter.

The models presented here may all, at first, seem quite complex

and very static, and it brings up the question of which processes

may be automated so that the user profits from such a JDF instal-

lation. In fact, JDF devices can automatically initiate processes on

a machine. This requires the following conditions:

• A process described in JDF is executable by the machine.

• The status of the process is Ready or Waiting.

• All input resources have the status Available.

Control Panel JDF Interface JDF InterfaceRIP Imposition

Press Folding FoldingCTP Platesetter

Press PostpressPrepress

OMS

Device

Machine

Controller

Agent

Figure 6.24

Hierarchically organized

JDF/JMF communication

Figure 6.25

NodeInfo resource

<ResourcePool>

<NodeInfo FirstStart="2008-08-01T00:00:0+01:00"

LastStart="2008-08-02T08:08:00+01:00"

LastEnd="2008-08-02T15:00:00+01:00"... />

...

</ResourcePool>

81Chapter 6

• The current time is within the interval of defined production

time.

The production time interval for a process node is recorded in its

own resource with the name NodeInfo. Generally, information

about execution, responsibility for the process, and consequences

of a timeout are stored in this resource. In the example in Figure

6.25 the process should begin no earlier than on 1/8/2008 at mid-

night and at the latest on 2/8/2008 at 8:00 a.m. The process must

end at 3:00 p.m. at the latest on the same day.

6.6 Separating and Merging

In workflow management systems, things can run in parallel. Ac-

cordingly, JDF information must be available on multiple JDF De-

vices. Moreover, it may be more practical on the grounds of data

management to only provide the information to a JDF device that

it needs and not the entire JDF document. In both cases one must

also duplicate sections of the JDF code and send them to other de-

vices. Since these devices can append JDF information to the cop-

ied files and, of course, the entire production log should be avail-

able again in a single JDF document, it must also be possible to

merge the copied and modified JDF data back into the original

document. In order for this whole process to work, some things

need to be considered. Above all, multiple places in the JDF code

may not be changed, and so there must be agreement on who

has permission to read (read only) and who may read and write

(read-write). In short, the consistency of the data must be ensured.

In JDF jargon the procedure is called “Spawn and Merge.” Instead

of “spawning” we talk about “separating,” but it is actually more

of a copy process.

In Figure 6.26 the situation is presented graphically. On top (1) is

the document depicted originally, from which (2) a JDF node is

separated and a new document is generated. One clearly sees in

(3) how the separated node is changed independently from the

original document, and (4) finally how it is reunited with the origi-

nal JDF tree. The detached node can certainly generate even more

child nodes.

Naturally, resources can also be separated as portioned resources.

It must be noted in the original document which resources were

separated. The Spawn and Merge operations will be logged in

the AuditPool.

1. Early state

3. Advanced production

2. Separate/Spawn

4. Joining together/Merge

Figure 6.26

“Spawn” and “Merge”

processes separate or

merge, respectively

82 Introduction to JDF

In the following, we want to show an example of a separation

and merge.

In Figure 6.27 we see a JDF job before the separation process. In

the next step the subproduct “Cover” is separated (in order to pro-

duce it, for example, at another site). In Figure 6.28 you can see

how the master file was changed after the separation: in the Au-

ditPool the NewSpawnID was registered which can also be found

in the separated file. Moreover, the URL of the separated file is

noted under the jRef ID of the node which was separated, and fi-

nally also in the rRefsROCopied attribute (R
1
 to R

9
) which were sep-

arated. The RO in the attribute name means that the resource is

Read-Only, i.e., the process that handles the separated part may

only be read and not changed. It is further noted that the sepa-

rated pieces of the JDF tree—in this case the JDF node “Cover”—

are still found in the original file. Figure 6.29 shows a section of

the file with the separated JDF data. All of the IDs like JobID and

JobPartID are not altered; only the SpawnID is additionally defined

<JDF DescriptiveName="Total product" JobID="_001"...>

<AuditPool>

<Spawned NewSpawnID="_004" Status="Waiting"

TimeStamp="2008-10-25T09:38:09+02:00"

URL=file://file:/C:/GetrennteDatei.jdf

jRef="002" rRefsROCopied="R1 R2 R3 R4 R5 R6 R7 R8 R9" />

</AuditPool>

<JDF DescriptiveName="Cover" ID="_002" JobPartID="_003"

Status="Spawned" Type="Product">

...

</JDF>

</JDF>

Figure 6.28 (topmost)

Original file after separation

Figure 6.29 (top)

Separated JDF file

<JDF ... DescriptiveName="Total product" ID="_002" JobID="_001"

JobPartID="_003"

SpawnID="_004" Status="Waiting" Type="Product">

</JDF>

...

<AncestorPool>

<Ancestor FileName="file:/C:/Originaldatei.jdf" JobID="_001"... />

 ...

</Ancestor>

</AncestorPool>

</JDF>

<JDF DescriptiveName="Total product" JobID="_001"...>

<JDF ...DescriptiveName="Cover" ID="_002 " JobPartID="_003"

Status="Waiting" Type="Product">

 ...

</JDF>

</JDF>

Figure 6.27

Original file before

separation

83Chapter 6

(the same number as the attribute NewSpawnID before it). Addi-

tional information about the original JDF job is stored under the

Ancestor element, here the file name and the storage location as

well as the JobID. This information is required in order to correctly

merge the data back again later. In this state the main file and the

separated file could be developed independently of each other, at

least when the latter has write rights. Finally, at some point the two

JDF trees will be merged. The result is seen in Figure 6.30, which

is actually the same as before the separation process. Only the en-

tries in the AuditPool describe that in the meantime a section was

separated and was later remerged.

The entire process is recursive, which means that separated JDF el-

ements can be separated again.

6.7 Interoperability Conformance Specifications (ICS)

Interfaces are always problematic. If, for example, an advertising

agency gives an order to a print shop for a print product, they may

not know exactly how the content data should be correctly pre-

pared. Conversely, the printers do not know what the agency does

not know, and so misunderstandings and frustrations arise. Even

though they both speak the same language, the communication

does not work satisfactorily. A solution to this dilemma in the out-

put of content data is the agreement on PDF standards like PDF/X

[23] or PDF/X-Plus [19], which limits the huge functionality of the

Portable Document Format.

These interface problems also exist in a similar way with the JDF

workflow: when an Agent, a Controller, or a Device to any degree

generates JDF structure, then the expectation is that the recipient

<JDF DescriptiveName="Total product" JobID="_001"...>

<AuditPool>

...

<Spawned NewSpawnID="_004" Status="Waiting"

TimeStamp="2008-10-25T09:38:09+02:00" URL="file://file:/C:/Test.jdf"

jRef="002" rRefsROCopied="R1 R2 R3 R4 R5 R6 R7 R8 R9 />

<Merged ... MergeID="_004" TimeStamp="2008-10-25T09:41:01+02:00"

URL="file://file:/C:/GetrennteDatei.jdf" jRef="002" />

</AuditPool>

...

<JDF DescriptiveName="Cover" ID="_002" JobPartID="_003"

Status="Waiting" Type="Product"...>

...

</JDF>

</JDF>

Figure 6.30

JDF file after the merge

84 Introduction to JDF

can do something with it. Conversely, the recipient requires cer-

tain JDF data that they possibly did not receive. Here is where the

Interoperability Conformance Specifications (ICS) provide a

remedy. They limit the vast functionality that JDF/JMF offers for

certain software components.

With this type of problem there are always two roles: one gener-

ates information, and the other consumes it, or at least it tries to.

In this respect the concepts of Agents, Controllers, and Devices are

not furthered and two new concepts are employed:

• The Manager sends predominantly JDF documents to a Worker

(Controller or Devices). Moreover, it can optionally send JMF

messages to them. Its second priority is to read JDF documents

and JMF messages which are sent to it by a Controller or

Devices.

• The Worker receives JDF documents from the Manager (Agent

or Controller), perhaps also JMF messages. In addition, it can

(again, as a secondary priority) send back JDF/JMF information.

One may argue about the word choice of Manager and Worker,

but we will follow this language usage of the ICS papers. Note

that both Manager as well as Worker can read and write JDF data

and JMF messages. For example, a Manager sends a JDF process

to a Worker, who performs it, and during and after the process

sends back information about used, consumed, and generated re-

sources. If one wants to emphasize the role of the writing of JDF/

JMF (or also of modifications), one speaks of producers (Producer)

and, with the role of the reader, of a consumer (Consumer). Man-

ager and Worker are therefore sometimes producers and some-

times consumers.

The ICS papers describe differ-

ent interfaces, which are built

in part on one another. The dif-

ferent MIS interfaces, which are

defined through ICS papers and

based on JDF version 1.3, are

shown in Figure 6.31. The en-

tire collection of ICS papers and

their hierarchy are shown in Fig-

ure 6.32. The MIS to Finishing

ICS, for example, is founded

on the Base ICS, the JMF ICS,

and the MIS ICS, while the Of-

Figure 6.31

MIS interfaces described in

ICS papers

Sheetfed offset

Prepress

NewspaperFinishing

Web offsetCustomer

MIS

85Chapter 6

fice Digital Printing ICS

is based only on the

Base ICS.

Moreover, the individ-

ual interfaces are clas-

sified yet again in dif-

ferent levels, which

are also hierarchically

structured. We will in-

troduce some of the

ICS papers in detail in

the following chap-

ters. Now we want to

illustrate the Base ICS

in more detail. There

are three levels de-

fined, namely Level 0,

Level 1, and Level 2,

whereby the function-

ality of Level 1 is com-

prised of Level 0 and correspondingly the Level 2 functionality is

comprised of Level 1. In the remaining ICS interface papers the

presupposed levels of the Base ICS can be specified. An interface

satisfies only the Base ICS Level 0 if the Manager can transmit JDF

documents via a hot folder and the Worker can read them. Level

1 is reached, conversely, when the Worker can also send JDF docu-

ments to the Manager and the Manager can read them. For Level

2 there are exactly two further requirements to fulfill:

• In general, it can be useful with a WMS implementation to

transmit multiple data simultaneously such as JDF documents,

JMF messages, PDF print data, preflight profile, ICC color

profile, and preview images. These may come packaged

together such as in a MIME package (MIME stands for
Multipurpose Mail

Internet Extensions). As

with email attachments,

multiple different data may

likewise be sent together.

At Level 2 the Manager

must now collect the MIME

packets and the Workers can

interpret them (Figure 6.33).

M
IS

 t
o

Co
nv

en
tio

na
l P

rin
tin

g
Sh

ee
tf

ed
 IC

S

M
IS

 t
o

Fi
ni

sh
in

g
IC

S

MIS ICS

JMF ICS

Base ICS

JDF 1.3

M
IS

 t
o

Pr
ep

re
ss

 IC
S

O
ff

ic
e

D
ig

ita
l P

rin
tin

g
IC

S

La
yo

ut
 C

re
at

or
 t

o
Im

po
si

tio
n

IC
S

Cu
st

om
er

 t
o

M
IS

In
te

gr
at

ed
 D

ig
ita

l
Pr

in
tin

g
(ID

P)
 IC

S

N
ew

sp
ap

er
:

M
IS

 t
o

W
eb

Pr
es

s
IC

S

Co
m

m
er

ci
al

 W
eb

:
M

IS
 t

o
W

eb
Pr

es
s

IC
S

Figure 6.32

In part, ICS Papers build

upon each other

Level 0

Level 1

Level 0

Level 1

Level 2 Level 2MIME

Figure 6.33

Different levels in Base ICS

86 Introduction to JDF

• As a rule, files are referenced within a PDF document, for

example a PDF. That means, for example, the server in the

local network and the path in the file system where the files

can be found are provided. In Figure 6.34 a RunList (page

sequence) is defined which consists only of a PDF document

(LayoutElement) whose file name and memory location is

known over a path name (FileSpec). The value “0 ~ - 1” of the

Pages attribute states that all of the pages of this file should

be used. Level 2 additionally demands only that the Manager

makes these files available over HTTP and the Worker can also

pick them up over HTTP.

Besides these levels, several technical things are illustrated in the

Base ICS, so for example, an ID may consist of any number of char-

acters. Interestingly (but only slightly) are the presence of require-

ments which are generated from JDF nodes and their attributes

and subelements. The configuration states, for example, that the

Manager writes the JobID in the root element and the Worker must

read it or who must enter which Audit elements are mandatory

into the AuditPool, which are optional, and so on.

In summary, it can be said that the ICS papers are not just tools for

developers of JDF software; instead they also form the most im-

portant basis for integration and tests between multiple JDF com-

ponents. In the case of an error in JDF communication, one should

first examine whether all of those involved in communications are

adhering to the ICS rules.

Figure 6.34

Reference to Content Data

via the URL

<ResourcePool>

<RunList ID="_4719„ Pages="0~-1" Class="Parameter" Status="Available">

<LayoutElement>

<FileSpec URL=file://Workflowserver/Pagefiles/Frisch-Advertising.pdf

/>

</LayoutElement>

...

</RunList>

...

</ResourcePool>

87Chapter 6

Exercise:

Download the JDF Editor as well as some sample files from CIP4.

org. Open the files and examine the structure of the JDF nodes

and the resources.

Rename the *.jdf files to *.xml and open them with a browser. An-

alyze them directly as XML code.

Separate a JDF subnode with the help of the Editor and then sub-

sequently proceed to put it back together again. Analyze the in-

termediate status with a browser.

89Chapter 7

7 Job Messaging Format (JMF)

In the last chapter we saw how data can be transmitted between

different Agents, Controllers, and JDF devices by means of JDF data.

In the simplest case, JDF data is written from a JDF producer and

placed into the hot folder of a JDF consumer which scans for new

data at certain time intervals. This unidirectional interface for file

transfer is naturally quite static and allows very little dynamic inter-

action between the workflow stakeholders, which, for example, is

important for data collection, job tracking, job changes, centralized

error detection, analysis of material consumption, collection of the

overall efficiency of machines, or for system management (espe-

cially at startup). Job Messaging Format, together with JDF was

introduced for this purpose. JMF messaging is not implemented

in each JDF workflow, yet we will see what additional value it can

bring. However, for an MIS for example, Level 2 ICS is required for

certain JMF messages.

A general understanding of the JMF technology is important in

order to understand how a JDF/JMF workflow functions. Despite

that, one needs to be clear about the fact that as a user one has

less to do. Because while JDF data are mainly made available as

files and thus are easily available for analysis and possible trouble-

shooting, JMF data are mostly sent over the HTTP protocol and

therefore are not physically delivered as a file. Naturally, one can

use an HTTP sniffer, programs that find HTTP packets and make

them readable—although with the quantity of information that is

usually sent over the network it tends not to be very fun. In this

respect we will also place more emphasis on JDF than on JMF and

leave out some JMF subtleties.

7.1 Communication Models

However, before we step into the structure of the JMF message

protocols, we wish to discuss, somewhat more generally, different

communication models that are common between software mod-

ules in the graphic arts industry:

• File transfer via hot folders (or manually)

• Data transfer over printing protocols

• Database interfaces

• Interprocess communication

90 Job Messaging Format (JMF)

• Web services

• Message protocols

File transfer over hot folders has a large advantage, namely the

simple administration by users, especially system administrators.

But they also pose some disadvantages:

• When a hot folder chain is broken (for example because a

computer is not running) it does not give a fail message.

• The data producer receives no acknowledgment that its data

was successfully read and could be interpreted.

• In the event of an error with the job execution, there are no

system monitors which can detect the causes.

• The communication is slow and is therefore suitable for either

shop floor data collection or for bi-directional handshaking

methods with which two or more modules must coordinate

themselves.

In many cases hot folders were and still are used by RIPs in which

the print data is placed. Typically these folders are then config-

ured in a way that certain RIP settings (resolution, line screen, etc.)

are associated. With many different RIP settings, many hot fold-

ers must be set up, which can be confusing. In a JDF environment

this is generally not a problem since the metadata is there and so

the variable settings are entered for the RIP—the hot folder sim-

ply presents itself as the communication channel.

Instead of file transfer, data is also distributed to the RIP system

by print protocol. The system may have made special settings for

a job via the print menu, but for JDF this method is not suitable.

Also the cross-vendor transmission of JDF via databases is imprac-

tical because no access methods exist. The same thing goes for the

implementation of interprocess communication, which indeed is

made by individual manufacturers but is not open source. These

techniques are found, for example, with PJTF communication be-

tween job ticket processors.

Web services define the message exchange between applications

in the Web on the basis of XML [45]. So by example, reservation

systems at travel agencies communicate with hotels via Web ser-

vices in order to make inquiries and bookings. Naturally, individual

modules of a workflow management system can communicate in

exactly the same way.

91Chapter 7

Web services require messaging protocols such as SOAP (originally

Simple Object Access Protocol), for example, from W3C. This

protocol is in fact employed in workflow management systems.

SOAP services the exchange of

XML messages and therefore

can also transport JMF. HTTP is

mainly used for sending.

JMF messages are small XML

documents which have a root

element with the name of JMF,

as you can see in Figure 7.1.

Then, within the subelements

of the JMF root element the

messages are actually coded.

The message itself is usually

sent over HTTP or the HTTPS

protocol, which normally

transports HTML websites over

the Internet. With this method

a two-way communication

can be built quickly. Alterna-

tively some JMF messages are

also placed into hot folders as

files which the receiver must

read. It is the same method

that is also widespread with

JDF (Figure 7.2).

7.2 JMF Families

What is the most important content that can be transported with

JDF now? Here are some examples:

• Initializing of devices

• Device and job status

• Control of queues and their entries

• Completion of milestones

Most of all, the dissemination of the status of devices and print or-

ders is of central interest, because the user can draw a variety of

benefits from this. Job tracking is even possible with JDF, as is final

cost analysis. Also, central monitoring of the devices is easier with

BA

JMF via HTTP
bidirectional and synchronous

BA

JMF via hotf older
unidirectional and asynchronous
Receiver must not be accessible during transmission

polling

polling

Figure 7.1

JMF message

<JMF TimeStamp= "2008-07-25T12:32:48+02:00"...>

 ...

</JMF>

Figure 7.2

Different types of JMF

communication

92 Job Messaging Format (JMF)

the help of such communication. In practice it is often not partic-

ularly difficult to generate and to send messages regarding device

condition and production progress. It is much more problematic to

subsequently filter the mass of data for meaningful aspects. For this

reason in part, final cost analysis does not commonly occur on the

basis of JMF messages, but instead with the help of the AuditPooIs,

which we presented in Section 6.2. These Audit entries from de-

vices are typically entered in their own JDF, which, after the com-

pletion of all processes, are provided back to the MIS or to a cen-

tral JDF workflow server. The Manager must take over filtering of

the JMF messages and the writing of the Audit from the Worker.

JMF messages can be divided into six categories, the so-called JMF

family:

• JMF Query

• JMF Command

• JMF Response

• JMF Acknowledge

• JMF Signal

• JMF Registration

A JMF Query is directed to a JMF controller or a JMF device in or-

der to receive some specific information. It does not change, as op-

posed to a Command, the status of the addressee. The device or

controller usually responds to the Query with a Response. In Fig-

ure 7.3 an example of a Query and a corresponding Response can

be seen as a graphic. Each controller and each device has its own

ID, and the question and the answer have their own identifiers. So

the answer can unambiguously be associated to the earlier Query.

In this case the controller with the ID = 4711 wishes to find out

which devices the addressed controller, with the ID = 42, monitors.

Such a question could be important, for example in a plug-and-

play method for JDF modules (although this is still far from reality).

The device then answers that it administers a RIP and a CTP imager.

Controller 42

RIP

Controller 4711

CTP Imaging

Query 101:
“What do you control?”

Response 66:
“RIP and CTP imaging.”

Figure 7.3

JMF query and response

93Chapter 7

The corresponding JMF code is listed in Figure 7.4. It is perhaps ob-

vious that the ID of the receiver is not included, neither with the

Query nor with the answer in XML code. ID = 42 is not placed in

the Query and the ID = 4711 is not in the Response. So how can

the message reach the correct addressees at all? The solution to

this puzzle is that the recipient is addressed over HTTP protocol

(also via hot folders). Figuratively speaking, the JMF message is in

an envelope with the corresponding address label stuck on it and

then this is sent via HTTP. One can also see in the code that the Re-

sponse is clearly set within the refID attribute directed to the pre-

viously sent request.

Commands can change things. This also goes for JMF commands.

They allow entries in the queue to be erased through commands

while a Query only can request the status of a queue. But before

we go any further here, what is a queue? Of course it does not

refer to the line at the supermarket; it is, instead, a data structure

that acts as a buffer and as a rule works on the principle of First

In/First Out (first come, first served). This could also be a data buf-

fer from a RIP, for example, in which the RIPing data will be tem-

porarily stored or as temporary memory for JDF jobs for a control-

ler or a device.

With respect to queues, there are two types of JMF commands:

those that either relate to individual entries within a queue or with

the complete queue itself. This is how the command HoldQueue

stops the entire queue and no jobs are processed further, while the

command HoldQueueEntry puts only a single job in the queue on

ice. Although if commands seem unimportant or even useless with

respect to queues or their entries, one should realize that without

them, workflows would be limited. For example, only when a de-

<JMF TimeStamp="..." SenderID="_4711">

<Query Type="KnownDevices" ID="_101"/>

</JMF>

<JMF TimeStamp="..." SenderID="_42">

<Response Type="KnownJDFServices" ID="_66" refID="_101"/>

<DeviceList>

<DeviceInfo DeviceStatus="Idle">

<Device DeviceID="Rip" />

</DeviceInfo>

<DeviceInfo DeviceStatus="Running">

<Device DeviceID="CtP"/>

</DeviceInfo>

</DeviceList>

<Response>

</JMF>

Figure 7.4

JMF Response to a Query

94 Job Messaging Format (JMF)

vice can communicate to a con-

troller that the job no longer has

to wait but is currently actively

running can this information in

turn be used to update the user

with a snapshot of the produc-

tion status.

Queue entries have different

statuses like:

• Waiting

• Held

• Running

• Suspended

• Aborted

• Removed

These statuses can pertain not

only to the queue but also to

devices, as is seen in Figure 7.4

(DeviceStatus).

Figure 7.5 shows the status and

some status transitions (in order

not to overload the drawing,

we have left some out). More-

over, in some cases it shows JMF

Running

Completed

Aborted

Held

Suspended

Start

Stop

Waiting

Removed

ResumedQueueEntry

HoldQueueEntry

SubmitQueueEntry
@hold = true

AbortQueueEntry
ResumedQueueEntry

Figure 7.5

Status and Status Transition

with Queue Entries

<JMF SenderID="Controller-1" TimeStamp="2008-08-13T10:05:32+01:00"

Version="1.3"...>

<Command ID="C1" Type="AbortQueueEntry">

<QueueEntryDef QueueEntryID="job-4711" />

</Command>

</JMF>

<JMF SenderID="Device-1" TimeStamp="2008-08-13T10:05:33+01:00"

Version="1.3"...>

<Response ID="R1" Type="AbortQueueEntry" refID="C1">

<Queue DeviceID="Device-1" Status="Running">

<QueueEntry JobID="job-4711" QueueEntryID="job-4711"

Status="Aborted" />

</Queue>

</Response>

</JMF>

Figure 7.6

Command to abort a

job in a queue and the

corresponding response

95Chapter 7

commands which cause the status transitions. Notice the differ-

ence between Held and Suspended. In both cases jobs will be sent

for further processing, only once from the Waiting status and the

other time out of the Running status.

The Command to abort a job as well as the answer (Response)

to this Command is seen in the code example in Figure 7.6. Con-

troller 1 sends an AbortQueueEntry command (C1) in reference

to the queue entry job-4711. The recipient of this Command is

Device-1; its Response deals with Command C1. The aborted job

is actually still an entry in the queue, only now with the Status set

equal to Aborted.

JDF jobs can, as we know, be transported as files via hot folders.

Another possibility consists mostly of a controller or a device com-

municating how and where these JDF files can be picked up, at

which point there are two possibilities given for “how”: either via

normal file transfer or over HTTP. The code example in Figure 7.7

shows the actual situation for file transfer.

Other examples of commands are found with the pipe data struc-

ture, which we briefly introduced in Section 2.6. With overlapping

production, a process P1 is put into a pipe; after a time, a second

process P2 brings them back out. What is special about this pipe

structure is that a partitioned resource does not need to be com-

pletely brought into the pipe before it can be read from there. In

the example mentioned in Chapter 2, P1 was the plate imaging

process and P2 was the print process: while the job plates are being

imaged, the first signatures can

already be printed. The actions

are likewise commands (Figure

7.8) to put a resource in a pipe

(PipePush) and respectively to

remove the resource (PipePull).

Finally let’s discuss the Re-

source Messages. These are

requests or commands con-

cerned with JDF resources. For

example material, device, or

job resources are queried (Re-

<Command ID="C2" Type="SubmitQueueEntry">

<QueueSubmissionParams URL=”File://HdM/Server1/Jobs/job1.jdf” />

</Command>

Figure 7.7

Individual Queue Entry

Figure 7.8

Storage with pipes and JMF

commands for filling and

emptying

Process 2

Process 1 Pipe

Fill Level

PipePush

PipePull

96 Job Messaging Format (JMF)

sourceQuery) or are modified (ResourceCommand). With the help

of commands, JDF resources can be sent to a device in either a

completely new version or existing resources are updated. For ex-

ample, if a plate is exposed then the corresponding controller sends

a command so the status of the JDF resource or a section thereof

is set to Available.

With an acknowledgment (Acknowledge) in JMF, one understands

a temporally staggered (asynchronous) response to a Query or a

comment. Because responses, especially commands, may require

a while until they are executed, the receiver first sends a Response

that the Query or the Command has been received and later a

confirmation that the Command was carried out. In real life the

terminology is reversed: an order will be carried out immediately

and answered later.

Signals are unidirectional messages which are commonly concerned

with status changes of machines or jobs. A controller can “sub-

scribe” to those signals in different manners and ways, which means

they give notice that they wish to receive a certain type of signal. In

Figure 7.9 the structure of a signal providing information about the

production status of a printing press is sketched out. The JMF mes-

sages consist of a signal, which in turn contains two subelements.

The StatusQuParams element defines the job to which the signal

refers. The DeviceInfo

element gives infor-

mation about the

device such as instan-

taneous Status and

also details about pro-

duction counters and

the like. Further infor-

mation about the de-

vice, the operator of

the device (as long as

he or she has logged

in), and the job is con-

tained In the Device,

Employee, and Job-

Phase subelements. In

Figure 7.10 the short-

ened code for this sig-

nal is shown. In the

JobPhase element one

sees that the job was

Figure 7.9

JMF Signal

Signal

MISDetails

Jobphase

Person Part

DeviceInfo

Device

StatusQuParams

Employee

97Chapter 7

completed (the Status is Completed) whereupon a total of 1,002

sheets were printed, of which 71 were spoilage sheets. Moreover,

it shows that the customer must pay for the order (the CostType

attribute is set to Chargeable) is noted in the MISDetails element

and that the original order was carried out without any changes

(the WorkType is Original). The DeviceStatus attribute in the Devi-

ceInfo element stands at Idle, which is “inactive”; other statuses

are: Down, Setup, Running, Cleanup, Stopped, or Unknown. One

additional attribute in the same element (not included in Figure

7.10) is called StatusDetails. With this, more precise information

about the status of machines, and particularly printing presses, can

be made. The list in Figure 7.11 contains a selection of options.

Exactly such a list details how exact and comprehensive JDF and

JMF were specified.

The last member of the JMF family is the registry. At this point the

idea is to prompt the sending of commands to third parties in cer-

tain circumstances. By way of example, an MIS can request a pre-

press WMS to send CIP3 data to a particular printing press. This

command hierarchy requires fixed communication channels (per-

sistent channels) which it is first required to set up. Since these are

also important for signals, we want to illustrate them more accu-

rately, but only in the next section; in that respect, we will not go

further with registrations in particular.

In the end it should be mentioned that the JMF protocol can be ex-

tended with private content. Through the inclusion of name spaces,

new elements and attributes can be created. Similar to JDF, it in-

creases flexibility at the expense of compatibility.

<JMF SenderID="_4004"...>

<Signal ID="S1" Type="Status">

<StatusQuParams JobID="_0001" JobPartID="_002"... />

<DeviceInfo DeviceStatus="Idle" TotalProductionCounter="13862.0">

<Device DeviceID="_4004" Status="Available"... />

<Employee ID="_111" PersonalID="_013" Roles="Operator"

Status="Available">

<Person FamilyName=”Cool” FirstName=“Carl“... />

</Employee>

<JobPhase JobID="_001" JobPartID="_002"

StartTime="2008-07-22T13:18:12+02:00" Status="Completed"

TotalAmount="1002.0" Waste="71.0">

<MISDetails CostType="Chargeable" WorkType="Original" />

<Part SheetName="Blaetter" SignatureName="SIG1" />

</JobPhase>

</DeviceInfo>

</Signal>

</JMF>

Figure 7.10

Code example for a JMF

signal

Figure 7.11

Values for StatusDetails

attribute

BlanketChange

BlanketWash

BreakDown

CleaningInkFountain

ControlDeferred

CoverOpen

CylinderWash

DampeningRollerWash

DoorOpen

Failure

FormChange

Good

InkRollerWash

Maintenance

OutputAreaFull

PlateWash

Repair

ShutDown

SizeChange

SleeveChange

WaitForApproval

WarmingUp

WashUp

Waste

98 Job Messaging Format (JMF)

7.3 JMF ICS

The Interoperability Conformance Specification for JMF [12] speci-

fies conditions for JDF/JMF modules in two stages (levels):

Level 1

a) JDF data is distributed via hot folders.

b) Managers can build fixed communication channels only such

that the corresponding queries or registrations can be placed

in the JDF document.

Level 2

a) Managers can build fixed communication channels through JMF

messages directly via HTTP.

b) JDF data can be distributed via JMF.

c) There is a bidirectional JMF message exchange between Man-

ager and Worker. Specifically, appointments can be realized with

respect to the queue via JMF.

The element NodeInfo was already presented in Section 6.5, using

the example of a schedule manager for the execution of a process.

In fact, with the help of this resource, fixed communication chan-

nels (persistent channels) can be built as Level 1b calls for. These

fixed communication channels are typically required for a control-

ler to subscribe to signals from JMF-capable devices. So too can an

MIS determine that it will be informed regularly about the status

and about production details of a printing press. The term “sub-

scribe” is thereby the magic word, because in fact it is a Subscrip-

tion element created in the NodeInfo resource. The parent/child re-

lationships are shown in Figure 7.12. A fixed communication can

also be defined within a question (Query), which remains valid so

long as it is either capped or the corresponding JDF nodes have

been processed.

Of course, requests for these fixed communication channels are

also packed in HTTP and sent directly as JMF nodes. This is then

the requirement which must be fulfilled in Level 2a. The require-

ments 2b and 2c have already been presented. In particular we

saw in Figure 7.7 how, using the command of type SubmitQueue-

Entry, JDF jobs can be presented to devices over the HTTP protocol.

ResourcePool

Node-
Info

Query

Subscription

Figure 7.12

A subscription is requested

with the help of NodeInfo

99Chapter 7

Finally we want to summarize one more time, independent of the

ICS Levels, the different possibilities for sending messages in a JDF/

JMF environment whereby complexity of the implementation in-

creases from top to bottom.

• No JMF messages

• JMF signals

• JMF queries/JMF responses

• JMF commands

• JDF transmissions via HTTP

Exercise:

Download a freeware HTTP sniffer from the Internet and install the

software. Look for and read the HTTP packets in the sniffer which

are generated through the use of a browser.

101Chapter 8

8 Order Management Systems

Order management systems have several names in the graphic

arts industry: they’re also called management information systems

(MIS), industry-specific software solutions, enterprise resource plan-

ning (ERP), production planning and control systems, or simple

costing/spreadsheet programs. Naturally there are differences be-

tween the terms—but in practice they are often used interchange-

ably, and we will hereafter use both OMS and MIS. We also will not

pursue definitions of terms; instead we will list the main points of

what software can include:

• Estimating and final costing

• Commercial order processing (from quotation to invoicing)

• Customer data management

• Materials management

• Interface with production

• Handoff of production details

• Production planning/scheduling (deadline and resource

planning)

• Activity recording/data collection

• Order tracking (job tracking)

• Interface with finance and payroll bookkeeping

• Interface with customers (business and Internet portals)

• Interface with suppliers (paper supplier)

Order management systems are typically installed in print shops,

but not all of the functionalities listed above are essential and are

mostly depicted as optional modules only, such as production plan-

ning. Not all of them are essential for the JDF workflow, such as

interaction with finance and payroll accounting. However, esti-

mating, commercial order processing, and customer and material

management are the most important functions of an order man-

agement system. In the following sections we will highlight some

of these concepts in more detail and also analyze the dependen-

cies between them. For the JDF workflow, the interface from the

order management system to production is of special importance,

Some vendors of order

management systems:

Alphagraf

Hiflex

Megalith

Optimus

Pagina

Printplus

Prosecco

102 Order Management Systems

so we will investigate it further in the following section. The inter-

face can also be realized in the opposite direction, from produc-

tion to the order management system, whereby the production

floor data such as production status and dates can be returned as

feedback. Communication between print product buyers and print

product manufacturers using PrintTalk is the subject in Section 8.4.

8.1 Basic Functionality of an Order Management System

The subject of this book is not how a quotation is created and

how it functions. This is only a question of which input data a

quotation requires; the actual price determination of a print prod-

uct remains a magic crystal ball. The input data for estimating are

important insofar as these, at least in part, can be passed on to

production via JDF.

When estimating a printed product, as a rule, information from

the following areas is required:

• Business data

• Equipment components of the product

• Production machinery

• Material data

• Production processes

In many cases the required production processes are, indeed, con-

cluded from product definition and production machinery depend-

ing not only on prepress, but also on the properties of the data,

which a printer receives from the customer.

In the estimating program there is a very clear distinction between

user and administration. While the CSR carries out the quotation,

system administrators maintain the root data. In particular master

data maintenance consists of:

• Setting up of cost centers

• Entry of costs and duration of individual work processes (place

cost calculation)

• Definition of product types

• Entry of parameters for the print shop machinery

• Setup of customer and material databases

103Chapter 8

• User management

• Form processing

The user can, if the master data is set up correctly, quickly and eas-

ily assemble the required data for the estimate out of predefined

data sets. Next, the customer is usually selected from the database,

which then populates the contact person, their contact data, de-

livery and billing address, and even creditworthiness into the job.

During the product definition, the product type (book, brochure,

business card, etc.) are selected and the binding type, page size,

color, final size, bleed, and run length are defined. With com-

plex products, product components and their values must be pro-

vided separately. For instance, for a perfect-bound book the color

of the cover can be different from the color of the contents. Un-

der the “production machines” rubric the user can select a print

shop’s printing press stored as a set of parameters. With that, the

plate size, the gripper edge if applicable, the paper edge, perfect-

ing (duplexing) options, and the minimum and maximum sheet size

with respect to the roller width and the cutoff length are config-

ured. Subsequently, depending on the product, one or more im-

position templates are configured, which can usually be selected

from a template catalog. With the selection of the printing ma-

terial, the exact price can be loaded out of the corresponding

database but can still be overridden by the user. Of course the pro-

duction machinery for a print job can be chosen by the operator

or also automatically assigned by the system.

Finally the individual production steps must yet be defined, which

are not set up as part of the production standards by the sys-

tem administrator. These may be additional proofs requested by

the customer, special expenses for production of the actual print

data, or extra equipment generated in the processing of the ad-

ditional steps.

From all of this information the order management system calcu-

lates the production costs and outputs a sale price. Thereafter, the

offer letter (quotation) can be printed for postal mailing or faxed

or sent via email. After order entry, an order confirmation is sent

to the customer, and job jacket data is generated for production—

the latter, at least, by a JDF workflow.

The final costing is used for monitoring how the job was completed

and also to identify order-related discrepancies. Through final cost-

ing, not only can estimating be optimized, but ways to improve

production efficiencies can be discovered as well. Usually the term

104 Order Management Systems

“final costing” is somewhat limited, namely to the determination of

the actual working time of the utilized devices and the actual ma-

terial usage for the order. The estimating basis, namely the hourly

rates and the cost centers and therefore the costs of the individ-

ual operations, are seldom captured from the final costing. A fi-

nal costing also assumes a production floor data collection system.

These can happen via time sheets, which the company’s employees

fill out manually and must be subsequently transferred into book-

keeping software. Instead of filling out paper time sheets, the de-

tails are often entered by employees in shop floor data collection

terminals. There have long been proprietary systems, most of them

supplementary components of order management systems, for this

purpose. Yet the actual goal of a JDF/JMF environment is to gener-

ate the shop floor production data almost automatically. With JMF

there is a chance that various devices can send their data to a cen-

tral evaluation point, for example the MIS, using a standardized

protocol. With these dynamically generated data, the cost analysis

is less expensive and at the same time more exact, but also device

failure and the production status of jobs can be tracked.

But in a JDF world not all of the data are automatically generated.

So commonly there are computers with appropriate software di-

rectly next to machines that are not connected or next to hand-

work areas into which time is recorded and consumed or gener-

ated resources can be entered. These data are then sent to the MIS

or another instance for analysis using JDF or JMF.

8.2 JDF Interfaces to Production

The JDF interface between order management system and produc-

tion is actually one of the most important JDF interfaces. By now

the implementation of this interface is not only widespread but

also open in the sense that order management systems and pro-

duction software from different vendors can communicate via JDF

and JMF. This is not the case for all JDF interfaces, which we will

see in Chapter 9. For the print service providers Y and Z in sections

2.2 and 2.3, the JDF interfaces between MIS and prepress have al-

ready been sketched out.

There are essentially two models as to how JDF data can be passed

to production. Either the order management system hands off the

JDF data off to a central JDF production controller, which subse-

quently distributes the information to a controller and devices in

the prepress, press, and postpress departments, or it takes control

of the transmission to the different devices itself (see Figure 8.1).

105Chapter 8

This seemingly small difference, however, has large implications.

Because in the configuration on the left the workflow control lies

in production while in the graphic on the right the MIS takes con-

trol of this assignment. As the MIS carries out the workflow con-

trol, it must be able to receive the technical details from produc-

tion, such as color zone preset

values, the cutting positions, or

the fold sequence and forward

them to the appropriate device/

controller in the pressroom or

in post-processing. Therefore,

the request to the MIS goes

far from the classic commercial

challenge. Both of the config-

uration types shown in Figure

8.1 have been implemented by

manufacturers.

In this section we will presup-

pose the existence of a cen-

Press

OMS

PostpressPrepressPress PostpressPrepress

OMS

Production
Controller

Figure 8.1

JDF between MIS and

production

8x2

1

3

2 4

F28-1

1 2 3

F24-4 6x2

1 3

4

2

F24-3 6x2

1 3

4

2

F24-2 6x2

1 2

3

4

3x4

4

3

2

F24-7

1

F24-8 3x4

1 2

4

3

Figure 8.2

F24-8 of the JDF folding

catalog

106 Order Management Systems

tral JDF production controller

in our example. The transfer

of JDF data for post-process-

ing machines is so far rarely in

use, and therefore the interface

is treated separately in Chapter

11.

The interface is not abstract; in-

stead it is best described by an

example. The example product

is a 96-page, 4-color, perfect-

bound booklet with a final size

of 12@12 cm. Both the covers

as well as the interior pages are

printed on 43@61 cm sheets. The signatures for the inside are built

in accordance with F24-8 fold type catalog with a 3@4 imposi-

tion matrix so that there are a total of 4 signatures (4@24 = 96

pages). The cover is printed duplex, 6-up on the sheet (Figure 8.2).

The component view of the JDF file, which is typically generated

from an order management system, is shown in Figure 8.3. The

product node has two Component resources as input, namely the

cover and the inside. The end product is the output resource from

the type Component.

From the perspective of product nodes, GrayBoxes, and process

nodes we get a tree structure which is reproduced in Figure 8.4.

Product

Cover Interior

Conventional
Printing

Final
Imaging

Folding

Conventional
Printing

Final
Imaging

Folding

Conventional
Printing

Final
Imaging

Folding

Conventional
Printing

Final
Imaging

Folding
Conventional

Printing
Final

Imaging
Folding

Prepress
Preparation

Stripping

Figure 8.3

JDF root element of a

brochure

Product
Component
End product

Component
Interior

Component
Cover

Delivery
Intent

Figure 8.4

Tree structure of a JDF node

107Chapter 8

The red rectangles are product nodes, the yellow are the process

nodes, and the gray rectangles are the GrayBoxes—thus product

group nodes. Since four different signatures must be produced for

the inside, the GrayBox of the FinalImaging category and the pro-

cesses ConventionalPrinting and Folding are accordingly also cre-

ated four times.

Some of the processes and the process groups listed here were

already mentioned in the introduction to JDF. We would like to

characterize them at this point only briefly before analyzing them

in detail.

• PrepressPreparation: GrayBox which includes all of the work

steps from the processing of the content data through to

imposition.

• Stripping. Page assembly.

• FinalImaging: This GrayBox includes Imposition, the GrayBox

RIPing, the PreviewGeneration, and ImageSetting.

• ConventionalPrinting: Conventional print with physical press

form. Here: offset print.

• Folding.

The process group node PrepressPreparation is structured very sim-

ply, as one can see in Figure 8.5.

The input resource RunList de-

fines the press pages which will

be supplied by the customer. At

this point, after receipt of the

order, only the page count of

the press product is known but

not the name and save location

of the content data (see Figure

8.6). In contrast, the output re-

source RunList represents the

pages prepared for production

which in particular are normal-

ized, color space transformed,

and trapped.

The Stripping process with both

its input and output resources

is shown in Figure 8.7. For each

Signature there is a Stripping-

Figure 8.5 (top)

Resources of the GrayBox

PrePressPreparation

Figure 8.6 (middle)

RunList Resources as Input

for PrePressPreparation

Figure 8.7 (bottom)

JDF Process imposition

sheet creation

Prepress
Preparation

RunListRunList

<RunList Class="Parameter" ID="_001"

NPage="106" Status="Available" />

Stripping

Layout

RunListAssembly

Stripping
Params

108 Order Management Systems

Signature 3

Signature 2

Signature 1

Signature 6

Signature 5

Signature 4

RelativeBox 6

156

0,0 46 610

28

284

430

y

x

RelativeBox 3

RelativeBox 5RelativeBox 2

RelativeBox 4RelativeBox 1

Press
305

Params resource, and therefore

there are a total of five in our ex-

ample. These mainly contain the

position of the folding sheets on

the press sheet (see Figure 8.8)

and a link to the imposition tem-

plate of the folding sheet. In Fig-

ure 8.9 the positions of the six

folded sheets are listed individ-

ually. However, the information

is not very easy to understand.

First, the press sheet is sepa-

rated into six rectangles, whose

<StrippingParams Class="Parameter" ID="_200" PartIDKeys="SignatureName

 SheetName" PartUsage="Explicit" Status="Available">

<StrippingParams SignatureName="SIG001">

<StrippingParams SheetName="Umschlag" WorkStyle="WorkAndBack">

<BinderySignatureRef rRef="_201" />

<Position MarginBottom="79.370" MarginLeft="130.39"

MarginRight="0.0" MarginTop="0.0" Orientation="Rotate0"

RelativeBox="0.0 0.0 0.5 0.362" />

<Position MarginBottom="0.0" MarginLeft="130.39" MarginRight="0.0"

MarginTop="0.0" Orientation="Rotate0"

RelativeBox="0.0 0.362 0.5 0.660" />

<Position MarginBottom="0.0" MarginLeft="130.393" MarginRight="0.0"

MarginTop="51.023" Orientation="Rotate0"

RelativeBox="0.0 0.660 0.5 1.0" />

<Position MarginBottom="79.37" MarginLeft="0.0"

MarginRight="130.393" MarginTop="0.0" Orientation="Rotate0"

RelativeBox="0.5 0.0 1.0 0.3627" />

<Position MarginBottom="0.0" MarginLeft="0.0"

MarginRight="130.393" MarginTop="0.0"

Orientation="Rotate0" RelativeBox="0.5 0.362 1.0 0.660" />

<Position MarginBottom="0.0" MarginLeft="0.0" MarginRight="130.393"

MarginTop="51.023" Orientation="Rotate0"

RelativeBox="0.5 0.660 1.0 1.0" />

<StripCellParams BleedFace="7.086" BleedFoot="7.086"

BleedHead="7.086" BleedSpine="0.0" Spine="0.0" TrimFace="11.338"

TrimFoot="11.338" TrimHead="11.338" TrimSize="340.157 340.157" />

<MediaRef rRef="_202">

<Part SheetName="Cover" SignatureName="SIG001" />

</MediaRef>

<MediaRef rRef="_203">

<Part SheetName="Cover" SignatureName="SIG001" />

</MediaRef>

<DeviceRef rRef="_204" />

</StrippingParams>

</StrippingParams>

...

</StrippingParams>

Figure 8.9 (below)

StrippingParams contain information

for stripping (imposition)

Figure 8.8 (above)

StrippinParams contain the

fold sheet position

109Chapter 8

dimensions are given in the attribute RelativeBox. The four values

there all have values between 0 and 1 because they describe the

parts of the press sheet whereby the first two numbers define the

(x, y) values of the left bottom corner of the rectangle and the next

pair of (x, y) values define the top right corner. The RelativeBox

with the values of 0.0 0.0 0.5 0.3627 defines the rectangle below

left, and the press sheet below right also begins with a zero and

begins in the X direction at the half sheet and in the Y direction

and ends at 36.279% of the press sheet. Since the press sheet is

430mm high, the first RelativeBox ends accordingly in the Y direc-

tion at 156mm (0.36279@430mm). In this RelativeBox lies fold-

ing sheet 1 (see Figure 8.8). The other rectangles are calculated in

the same manner. In our example, the respective values

lay within each RelativeBox. The values in the RelativeBox

are determined through the values MarginBottom, Mar-

ginLeft, MarginRight, and MarginTop. The chart in Fig-

ure 8.10 again shows this situation. The StrippingParams

resource is actually a good example for a portioned re-

source (at least more valuable than Figure 6.14), which

is split according to the keys PartIDKeys, SignatureName,

and SheetName.

There are also a few other things that should be explained in the

JDF code from Figure 8.9. In the element StripCellParams the val-

ues for the first cuts as well as the final size of the partial product

are defined. Both references to the Media resources are respec-

tive of the substrate and the plate to be used. Finally the Bindery-

Signature resources can be mentioned, which is referred to in the

fourth row and can be seen explicitly in Figure 8.11. It obviously

contains the imposition template. In this case it is simply an en-

try entered into the folding catalog. Alternatively, the imposition

template can be directly entered into the subelement (Signature-

Cell) of BinderySignature. The BinderySignature resource therefore

corresponds to a conventional folding pattern which can be ap-

plied to multiple folding sheets and are defined independently of

the size of the pages with respect to the “up” and the print sheet.

The Assembly resource, however, is mentioned only once in the

JDF document. In it, with the resources introduced in JDF Version

1.2, all of the information generally exists whether the sheets are

to be collated or gathered.

<BinderySignature Class="Parameter" DescriptiveName="F04-01_ui_2x1"

FoldCatalog="F4-1" ID="_201" NumberUp="2 1" Status="Available" />

MarginBottom

MarginTop
RelativeBox

Margin
Left

Margin
Right

Usable space

Figure 8.10

Position of the tiles in the

RelativeBox

Figure 8.11

The BinderySignature

resource contains the

imposition template

110 Order Management Systems

In Figure 8.12 the product intent node GrayBox “Cover” and a

process and its links to the process are sketched out. The four re-

sources outside of the red rectangle provide the input and the out-

put resources of the product intent node. The resources above it

serve as inputs, which describe the intended end product: the size

of the final format is identified in LayoutIntent, the color in Color-

Intent, and the substrate in MediaIntent. The output resource Com-

Media-
Intent

Color-
Intent

Layout-
Intent

LayoutRunList DeviceRunListMedia
Colorant-
Control

FinalImaging:
Imposition, RIPing
PreviewGeneration,

ImageSetting

Conventional
Printing

Conventional
Printing
Params

Media
Exposed
Media

PreviewInkDevice

Component

Figure 8.12

Product node “Cover” with

its substructure and the

resources

111Chapter 8

ponent below the red rectangle represents the subproduct “Cover.”

This resource is then, in turn, input from the higher-level product

intent nodes which define the end product.

The GrayBox and the process are tied together with a row of re-

sources. The resources do not necessarily lie within the current

product intent nodes for the cover; instead they can similarly also

be one level higher in the root element, therefore in the product

intent node for the overall product. The arrows between resources

and the GrayBoxes therefore actually only depict the ResourceLinks.

At first glance it may appear that the diagram in Figure 8.12 is erro-

neous, since the input resource RunList is listed twice for the Gray-

Box. This is in fact intentional since the contents of the resources

are different than the resources themselves. Specifically, the Gray-

Box has the following input resources:

• Device: Definition of the platesetter

• RunList: File which contains the processed content data,

therefore the output from PrePressPreparation

• Layout: Signatures of the final product

• RunList: Files that contain the marks for the sheet

• Media: Plate definition

• ColorantControl: Colors of the individual signatures

Some of the resources do not only describe things from the com-

ponent part, “Cover,” but from the total product. These resources

(Layout, RunList, ColorantControl) must also be within the JDF el-

ement of the total product, so the subproduct “Interior” may re-

fer to these resources. From the resources named above there are

really only two which have a status equal to Available: Device and

ColorControl. All of the others are actually already applied formally,

but without important entries. So the status is set to Unavailable.

Order management, for example, does not yet know the file name

and the location of the content data and also the choice of the

printing plate is not made until it is in production.

The GrayBox “Imposition RIPing PreviewGeneration ImageSetting”

is not elaborated in detail. Only the output resources of this Gray-

Box are set, namely ExposedMedia and Preview, which in contrast

are required input for the following process. The statuses of both

resources must naturally also be Unavailable, since the GrayBox

was not yet run—or more specifically: since the GrayBox was not

112 Order Management Systems

yet converted into processes and these in turn could not yet be

executed. As we mentioned in Chapter 6, GrayBoxes are indeed

fundamentally not executable.

ConventionalPrinting has the following process as input resources:

• ExposedMedia: Plates for the job

• Preview: Preview images of each separation (for the

calculation of the color zone presets)

• ConventionalPrintingParams: Information about the

printing press type (roll, sheet) and turn

• Media: Information about the substrate

• Ink: Information about the colors

• Device: Information about the printing press

• ColorantControl: Colors for individual signatures

<JDF DescriptiveName="Cover" Status="Waiting" Type="Product"...>

<ResourceLinkPool>

 ...

</ResourceLinkPool>

<ResourcePool>

 ...

</ResourcePool>

<JDF Category="FinalImaging" DescriptiveName="Cover(CTP)"

Status="Waiting" Type="ProcessGroup"

Types="Imposition RIPing PreviewGeneration ImageSetting"...>

<ResourceLinkPool>

 ...

</ResourceLinkPool>

<ResourcePool>

 ...

</ResourcePool>

</JDF>

<JDF DescriptiveName="Cover" Status="Waiting"

Type="ConventionalPrinting"...>

<ResourceLinkPool>

 ...

</ResourceLinkPool>

<ResourcePool>

 ...

</ResourcePool>

</JDF>

</JDF

Figure 8.13

Element structure of the

partial product “cover”

113Chapter 8

Also, in this case all of the resources up to Ink, Device, and

ColorantControl have a status equal to Unavailable.

The element structure of the JDF nodes from the subproduct

“Cover” is provided in Figure 8.13. It only lacks the resources and

the links to the resources. No matter how one sees the diagram in

Figure 8.12, it is clear that the ResourceLinkPool of the production

node “Cover” must be visible as in Figure 8.14. The other Resource-

LinkPools are built in the same way. Also the resources themselves

are only in part worth mentioning. The Ink resource in Figure 8.15

shows only how, for the front and the back of each signature, the

required printing colors are to be defined. It defines itself here as

a portioned resource of which the breakdown is defined through

the values of the PartIDKeys attributes.

It is evident that not all of the resources of the “Cover” node are

presented here, and the JDF node “Interior” will also not be dis-

cussed further, because its construction is similar to the “Cover.”

Additional resources of the root element were swept under the rug

as well, such as the CustomerInfo resource with contains the cus-

tomer data. These all look quite similar to what is already shown

<Ink Class="Consumable" ID="_104" PartIDKeys="SignatureName SheetName Side

 Separation" PartUsage="Implicit" Status="Available">

<Ink SignatureName="SIG001">

<Ink SheetName="Cover">

<Ink Side="Front">

<Ink Separation="Cyan" />

<Ink Separation="Magenta" />

<Ink Separation="Yellow" />

<Ink Separation="Black" />

</Ink>

<Ink Side="Back">

<Ink Separation="Black" />

</Ink>

</Ink>

</Ink>

And so on for the other four signatures of the interior

</Ink>

<ResourceLinkPool>

<ComponentLink Usage="Output" rRef="_100" />

<LayoutIntentLink Usage="Input" rRef="_101" />

<ColorIntentLink Usage="Input" rRef="_102" />

<MediaIntentLink Usage="Input" rRef="_103" />

</ResourceLinkPool>

Figure 8.14

ResourceLinkPool of the JDF

node “cover”

Figure 8.15

Required separations

for the partial product

114 Order Management Systems

in Figures 5.2 and 5.3. Now we will stop showing the code and

our examples of it.

Instead we want to follow a different path, namely to clarify the

abstract definition of the CustomerInfo resource, as reflected in

JDF specification 1.4. This should make it easier for the reader to

grasp the specification. The tables are basically built like the ta-

bles in Figure 8.16: in the left column are the names of the struc-

ture elements (like an attribute, a subelement, or a referent to a

resource), the middle column gives the data type, and in the right

column the structure element is explained. Noticeable in the first

column are the blue comments like “New in JDF 1.2” or “Depre-

cated in JDF 1.1.” The last comment means that the correspond-

ing structure element from Version 1.1 has been abandoned, so

no JDF code with a version higher than 1.1 can contain it. For the

sake of compatibility it must naturally remain in the specification

table; however, we do not wish to proceed further with such “out-

dated” concepts. In addition, you will see special characters in the

name like a question mark (?) or asterisk (*). Sometimes (elsewhere

in the specification) you may also see a plus sign (+) or no special

characters at all (see, for example, Figure 12.8). These refer to the

number of possible instances:

Figure 8.16

Requirements of the

CustomerInfo resource in

the JDF specification

Name Data Type Description

BillingCode ? string A code to bill charges incurred while executing the Node.

CustomerID ? string Customer identification used by the application that created the Job. This is usu-
ally the internal customer number of the MIS system that created the Job.

CustomerJobName ? string The name that the customer uses to refer to the Job.

CustomerOrderID ? string The internal order number in the system of the customer. This number is
usually provided when the order is placed and then referenced on the order
confirmation or the bill.

CustomerProjectID ?

New in JDF 1.2

string The internal project id in the system of the customer. This number might be
provided when the order is placed and then referenced on the order confir-
mation or the bill.

rRefs ?

Deprecated in JDF 1.2

IDREFS Array of IDs of any Elements that are specified as ResourceRef Ele-
ments. In version 1.1 it was the IDREF of a ContactRef. In JDF 1.2 and
beyond, it is up to the implementation to maintain references.

Company ?

Deprecated in JDF 1.1

refelement Resource Element describing the business or organization of the contact. In
JDF 1.1 and beyond, Company affiliation of Contacts is specified in
Contact.

Contact *

New in JDF 1.1

refelement Resource Element describing contacts associated with the customer. There
SHOULD be one Contact [contains (@ContactTypes,
ÒCustomerÓ)]. Such a Contact specifies the primary customer’s name,
address etc.

CustomerMessage *

New in JDF 1.2

115Chapter 8

? Optional

* Never or several times

+ Once or several times

If no special characters are in the name, then the structure ele-

ment is required and must appear exactly one time. The attribute

CustomerID may therefore appear only once, but must not appear

again while the subelement Contact can appear never, once, or

several times.

The datatype String is simply a character string, a RefElement is an

Element or a reference to an element, whereas with an Element

(which is not present in Figure 8.16) the element must be directly

accessible.

Here is the short explanation of the structural elements, which are

current in Version 1.4:

• BillingCode: An account number for the job

• CustomerID: Customer number from the MIS

• CustomerJobName: Customer name

• CustomerOrderID: Customer’s order number

• CustomerProjectID: Customer’s project number

• Contact: (Reference to an) Element which describes a contact

• CustomerMessage: Description of a message to the customer,

for example an automatic emailing when the node is produced

The Contact and the CustomerMessage elements get their own

table in the specification. Since both elements have subelements

(Address, ComChannel, Company, and Person), one finds these

specified in other tables. The hyperlinks were, however, not intro-

duced so as not to confuse the reader; instead, because elements

can be employed from different parent elements, with this tech-

nique they must stand only one time in the specification. For ex-

ample, the ComChannel element is a subelement of both Contact

as well as CustomerMessage. In reality the reader must not only

follow the links at the bottom (i.e., to the possible child elements)

but instead also to a certain extent above: there are so-called “ab-

stract resources” which the attributes describe and which all of

the resources may have. These general attributes (for instance, ID,

116 Order Management Systems

Class, or Author) are then listed no more in the table of concrete

resources. The same also goes for JDF nodes.

Up until now we have covered nearly all of the flow of data from

MIS to prepress and not in the reverse direction, which is crucial

for final costing. For this path there are two possibilities that are

often used in parallel:

• MIS receives JMF messages from the production system.

• The JDF, which was changed by the production system, is

transferred back to the MIS.

Above all, the AuditPools are read at the return receipt of the JDF

from the production system, as already stated in Chapter 6.

8.3 MIS ICS Papers

The importance of the interface between the order management

system/MIS and production can be seen in the number of the cor-

responding ICS papers (Figure 6.7). To date, the following docu-

ments are current in Version 1.3; however, these have relatively

short lives and the reader is cautioned to obtain the newest ver-

sion on the Internet [12].

• MIS ICS

• MIS to Prepress ICS

• MIS to Conventional Printing – Sheetfed ICS

• Newspaper: MIS to WebPress ICS

• MIS to Finishing ICS

We want to go into the first of these ICS papers only briefly; the

others are presented in part in the relevant Chapters 9–11. The MIS

ICS document specifies general requirements for the MIS which are

not specific for prepress, press, or post-processing.

Also in the MIS ICS are—similar to the JMF ICS—different levels of

compliance are defined. There are three levels which concern JMF

messages; we will only present the first two (Figure 8.17).

• Level 1: The MIS hands off only JDF via hot folders to the

Worker (Figure 8.17, Level 1).

• Level 2: The MIS may additionally generate JMF queries

with the help of the NodeInfo element, in order to create a

117Chapter 8

persistent channel from

the Worker to MIS (Figure

8.17, Level 2a). With these

the signal can be sent from

Worker to MIS. This method

corresponds to Level 1 in the

JMF ICS. The Worker in this

case must not be an HTTP

server, which means it is not

able to accept and process

HTTP packets. Alternatively

(Figure 8.17, Level 2b) in

Level 2 the MIS can directly

send JMF messages. With

this option the Worker may

very well be an HTTP server

and one assumes Level 2 of

JMF ICS.

Other requirements regarding

JMF are also raised. For example,

when the MIS sends a resource

query to a Worker, the infor-

mation about resources which

so far were consumed or pro-

duced is returned (Figure 8.18).

MIS software which may ful-

fill Level 2 of the MIS ICS must

also be able to send the corre-

sponding queries (whether via

NodeInfo or via a direct JMF message). An ICS Level 2 MIS Worker

must be able to receive these queries, interpret, and respond. The

same goes for requests concerning device status and job statuses.

In other words, job tracking and device status monitoring require

MIS ICS Level 2 both for the MIS software as well as for the Con-

troller and devices in production.

In practice, there are certainly

implementations of JDF work-

flows that do not support these

functions.

But requirements for JMF ele-

ments are not only defined in

the MIS ICS; many also concern

JDF. Many small details must be

Figure 8.18

The Worker must inform

the Manager about jobs

and resources when asked

L1

Manager (MIS) Worker (Production)

Manager (MIS) Worker (Production)

Manager (MIS) Worker (Production)

Level 1

Level 2b

Level 2a

Manager (MIS) Worker (Production)

Level 2

Inquiry

Device status

Job status

Resources consumed

Resources produced

Figure 8.17

Level 1 and 2 of the MIS

ICS

118 Order Management Systems

established. For example, it is required that the ICS level is entered

in each of the MIS-generated JDF root elements in a special attri-

bute (ICS Versions) on which the JDF document was built. Further,

each JDF root element must also have two special resources as in-

put, namely the CustomerInfo resource in which customer data

is placed and the NodeInfo resource which contains the sched-

ule and optionally one or more JMF message(s). Each of the MIS-

generated JDF root nodes is a product node, and the properties of

the product are stored in Intent resources. Each JDF root element

must also at minimum have one Intent resource as input. If there

were none, the product would be without properties and there-

fore rather meaningless. We already mentioned earlier that each

JDF root element must be related to an output resource Compo-

nent which represents the end product.

After completion of the processes, each Worker must record infor-

mation in the JDF process nodes about the start, end, duration, and

the like to hold as an Audit element. In MIS ICS Level 2 it must also

enter further information into the ResourceAudit element in the

AuditPool. These contain information from the Worker about ma-

terials used during execution of the process (plates, paper, ink, etc.).

8.4 PrintTalk/JDF Interface to Customers

The PrintTalk specification was introduced to the public in 2000 by

the organization of the same name under the umbrella of the NPES

(Association for Suppliers of Printing, Publishing and Converting

Technologies). In 2004 PrintTalk integrated itself with CIP4 and was

then dissolved as an independent organization. The PrintTalk spec-

ification is based on cXML, as previously discussed in Section 5.4.

Some order management systems can be JDF documents which

were sent from the customer and imported to generate a new

quotation or a new order. So a customer can, by way of example,

generate a JDF file in Acrobat which describes the product, fun-

damentally made from product nodes. The print shop would then

import these into the order management system. For this reason

the order management system would receive the necessary prod-

uct description from the outside; however, the business operations

would not continue to be covered. This mode of operation, how-

ever, has a catch: The JobID is created by the customer, and it is

doubtful that it would be in the number range of the print shop.

Conversely it makes more sense when a print shop formally en-

ters a job into the MIS, the nearly empty JDF file is sent via email

to the customer, who then can import the file into Acrobat and

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

119Chapter 8

complete it with order data. Fi-

nally, the customer can send the

completed JDF file back to the

printer, which can, in turn, au-

tomatically allocate the informa-

tion to the existing order.

End customers and delegated

production agents/service pro-

viders can communicate order parameters with the print shop via

JDF. Thereby the agency can automatically draw important param-

eters (for example, the delivery time and/or the number of cop-

ies) out of the customer’s system, complete them accordingly, and

forward them to the print shop of choice. With this scenario elec-

tronic feedback is very advantageous.

With JDF, communication between customer and print shop can

be achieved. PrintTalk, however, goes one step further.

The principle is quickly explained in Figure 8.19. Business objects

like requests or offers are exchanged over the Internet between

customers and print providers. Orders, order confirmations, delivery

documents, and invoices are also communicated in this way. Con-

sequently, through the integration of a PrintTalk interface with an

MIS system, many administrative steps can be simplified. In princi-

ple it is therefore a portal or Web-to-print solution.

There are two basic configurations: either a client communicates

directly with a printer’s Web server which offers such a service, or

there is a broker between both parties. In the second case, the

customer would log themselves into the Web server of the broker,

who would send price requests to different print shops via PrintTalk.

This will then generate offers (either fully automated in real time

or time delayed under the control of an employee) and send them

as PrintTalk objects back to the broker. The broker would then po-

tentially filter the offers and re-edit them before sending them on-

line to the customer. This procedure is widely used in other service

sectors, for instance in the travel industry. The automated queries

for prices naturally further generate price wars.

If the communication takes place directly between customer and

printer, the technical implementation can once again turn out dif-

ferently. Either the customer already generates PrintTalk documents

with his or her browser and sends them to the printer’s appropri-

ate server, or there is a “standard” Internet communication be-

tween customer and printer and the Web-to-print server in the

print shop first generates the PrintTalk communication. In the last

Figure 8.19

PrintTalk communication

between customer

and printer

50 €50 €50 €
EURO

50 €

PrintTalk - Inquiry

PrintTalk - Estimate

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €

EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

50 €50 €
EURO

50 €

120 Order Management Systems

case PrintTalk would only form a printer’s internal interface proto-

col between the Web-to-print software and the MIS. This situation

is shown in Figure 8.20. Of course an MIS server must lie within

a protected area in the local network of the printer, also behind a

firewall. The server which has the e-commerce shop installed on it

is usually in the “demilitarized zone.” The (potential) customer of

a printer also communicates over the Internet with an online or-

dering system, which in turn generates PrintTalk data and passes

these to the MIS. For this reason predefined products from outside

can be ordered with the help of HTML and the MIS picks up de-

fined BusinessObject elements in PrintTalk as well as JDF product

descriptions. This configuration allows an independent communi-

cations interface between Web portal and MIS as long as PrintTalk

and JDF are both supported.

With PrintTalk a business-to-business (B-to-B) communication be-

tween broker and printer as well as a business-to-consumer (B-to-

C) interface between the customer and the printer are built. In fact

there are very few PrintTalk applications, and we will see in the fu-

ture which configuration will be more frequently implemented. It’s

possible that the reason for a reluctance to implement it is that MIS

vendors often offer their own Web portal solutions and are there-

fore less interested on an open interface to MIS.

In Figure 8.21 the structure of a PrintTalk document is shown,

which is very similar to the general cXML structure which we pre-

sented in Figure 5.7. The header in the PrintTalk document is built

50 €50 €50 €
EURO

50 €

Pressroom

Unsecure Internet
FirewallFirewall

PrintTalk
Internet

Communication

MISInternet Shop

(Web-to-print)

Demilitarized

Zone

Figure 8.20

A printer’s Web server and

MIS; only the PrintTalk

protocol is used within the

print shop

121Chapter 8

Figure 8.21

Structure of a PrintTalk

document

exactly the same as in cXML. Also there is a request ele-

ment in PrintTalk. Its subelements now look somewhat dif-

ferent; it contains exactly one so-called BusinessObject. In

this example it is a purchase order, but in total there are

twelve different BusinessObjects.

• Quotation: Estimate

• PurchaseOrder: Purchase order

• Confirmation: Order confirmation

• Cancellation: Cancellation of a business object

• Refusal: Rejection of a business object

• OrderStatusRequest: Query about order status

• OrderStatusResponse: Answer about order status

• ProofApprovalRequest: Request for proof approval

• ProofApprovalResponse: Proof approval or rejection

of proof

• Invoice: Invoice

• ReturnJob: Print shop sends the job back to the

customer

Each BusinessObject naturally also has attributes which specifically

define the business transaction. In order placement, for example,

the currency is defined as are the options for subcategories like

form of payment and price level. In the example in Figure 8.22 we

even have two prices, one for the production of the print product

<PurchaseOrder AgentID="CC" AgentDisplayName="CarlCool"

RequestDate="2008-11-13T11:00Z" BusinessID="A001" Currency="EUR"

Expires="2008-12-13T11:00Z ">

<Pricing>

<Price LineID="_1" DescriptiveName="Hard Cover Books” Amount="6800"

Price="15000.00" />

<Price LineID="_2" DescriptiveName="Shipping” Price="980.00"/>

</Pricing>

<jdf:JDF...>

<JDF...>

 ...

</JDF>

</jdf:JDF>

</PurchaseOrder>

Figure 8.22

Ordering with PrintTalk

<PrintTalk...>

<Header>

<From>

...

</From>

<To>

...

</To>

<Sender>

...

</Sender>

</Header>

<Request>

<PurchaseOrder...>

<jdf:JDF ...>

<jdf...>

...

</jdf>

<jdf...>

...

</jdf>

</jdf:JDF>

</PurchaseOrder>

</Request>

</PrintTalk>

122 Order Management Systems

and the other for the delivery. In earlier version of JDF, price infor-

mation and payment modalities were allowed in the DeliveryIntent

resources. Meanwhile all of this information was removed from JDF

and put into corresponding PrintTalk elements.

Some of these BusinessObjects contain only one or more JDF nodes.

The PurchaseOrder element from Figure 8.22 actually contains

three JDF nodes, where only the top node is depicted. The de-

scription of the print product is then stored in the JDF element.

Subproducts of the order will be specified in other JDF nodes. For

example, the information about the customer (CustomerInfo),

about the intended delivery of the end product (DeliveryIntent)

would then be in the ResourcePool of the JDF root element like

normal. At this point, however, we will not continue this example

since it is built exactly according to the JDF rules which we have

already described in the last sections and in Chapter 6.

Exercise:

Create a JDF file with Acrobat. Indicate the customer, material, and

the product itself (for example, a brochure with 60 CMYK pages

inside and cover in CMYK+spot color).

Download the JDF Editor from CIP4.org, open the previously pro-

duced JDF file, and analyze the structure.

Rename your *.jdf file to *.xml and open it with your browser. Ex-

amine the JDF data and identify there the values you entered in

Acrobat.

123Chapter 9

9 Prepress

From the perspective of prepress, the JDF/JMF world looks like

Figure 9.1, where each arrow illustrates a potential JDF/JMF con-

nection. Typically a prepress workflow management system re-

ceives its JDF input data from an order management system (Ar-

row 1). Depending on the configuration, prepress can also return

messages back to the order management system. We have al-

ready seen that the JDF data which the MIS provides is not really

sufficient for production (keyword: GrayBox!) which means pre-

press will create new JDF structures and optional JMF messages

in different modules (Arrow 2). A section of it is taken over from

the order management system and the newly generated data will

be passed from prepress to the printing presses (Arrow 3) and to

postpress processing (Arrow 4) either directly or via the MIS. Inter-

faces 1 and 2 are only highlighted in this chapter, while interfaces

3 and 4, print and postpress processing respectively, are analyzed in

Chapters 10 and 11. Interface

1 is characterized by the appro-

priate ICS paper, the MIS to Pre-

press ICS, which is discussed in

Section 9.1. We will explain in-

ternal prepress interface 2 with

the help of examples in Sections

9.2 to 9.5.

But first remember the steps

in prepress which we already

listed in Section 3.2. We have

assumed that prepress receives

ready-made PDF data. The ac-

tual layout and the PDF cre-

ation are therefore not on the

list. These tasks are indeed typ-

ical for job shop printing, but

there are naturally also varia-

tions. So a form proof could be

implemented as a soft proof, as

a remote proof, or even com-

pletely eliminated; additionally

color binding page proofs can

be created and so on. Work-

flows for packaging print pre-

press often look quite different.

Figure 9.1

JDF/JMF linkages in prepress

Order
management

Module n Module 2

Module 3

Module 1

Press

Prepress

1

2

3 4

Post-
processing

124 Prepress

In order to cope with the myriad tasks in prepress, a prepress WMS

exists in most cases as different modules. In Section 4.3 we have

seen that the PJTF realizes the communication with the Extreme

workflow architecture between the coordinator software and the

job ticket processors (just the modules). This function takes over

only the JDF/JMF (arrow 2 in Figure 9.1). As in the case of PJTF,

which also goes for a JDF workflow, a standardized data exchange

format is not enough in order to permit the user of a WMS the

cooperation of individual modules from different vendors. Myriad

specific agreements are required.

9.1 Interfaces between MIS and Prepress

Before we explore the MIS to Prepress ICS in this section, we want

to engage in a couple of general considerations about this interface.

Ideally, besides the job definition and the definition of production

already in the order management system, one would also deter-

mine the production path in prepress. In fact, some prepress work-

Examples of JDF-compatible WMS (2009)

Manufacturer: Main product:

AC&C HSH Group PuzzleFlow

Avato System GmbH PMS Production Management System

Agfa Apogee

DALiM PRiNTEMPO

EFI OneFlow

EskoArtwork BackStage Server

Fujifilm XMF

Krause-Biagosch GmbH KIM

LithoTechnics Oty Limited Metrix

Heidelberger Druckmaschinen AG Prinect

manroland Printnet

Kodak Prinergy

OneVision Software AG Asura Pro

RamPage RamPage Workflow System

Screen TrueFlow

Xerox FreeFlow Print Manager

125Chapter 9

flow systems propose certain workflows on the basis of the JDF

information they receive from the order management system. But

as many details relevant to production are not known at the or-

der management stage, the WMS itself must fill in the gaps with

default values. The production paths are therefore not fully estab-

lished but clearly can still be changed.

Overall, the sequence of work steps the prepress software performs

for a print order can be determined in multiple stages:

1. A system administrator can define new workflows through

scripting.

2. The WMS agent of a print shop can define defaults for differ-

ent work paths and production parameters for classes of print

products. These settings are tangential to the basic workflow

that the manufacturer of the WMS software provides.

3. The user can make individual changes to the workflows sug-

gested by the WMS for individual print products.

In the first case there are different scripting possibilities which are

either furnished by the operating system or from the WMS man-

ufacturer. AppleScript [8] or Windows Script Host (WSH) [34]

with the VBScript or JScript engine belong to the first category;

the rules-based automation (RBA) [30] in Prinergy (Kodak) be-

longs to the latter category. These technologies are all very pow-

erful and it would take too long to deal with them here. If inter-

ested in RBA refer to the box on page 126.

In the second case, the WMS agent defines the default raster set-

tings in RIP or the trapping values. He or she can also define hot

folders for the input of content data, an automatic page order on

the imposition layout via rules for file names, or integrate new ma-

chines into the workflow.

In the third case, a graphical representation of the available WMS

workflows is presented on the user’s screen. The user or users have

the option to change single work steps for the print job or—for

example, to turn off trapping or to modify the default raster set-

tings in the RIP.

The interface between MIS and prepress is principally critical. In

theory, after a job is placed into the MIS, the technical details are

passed to the prepress WMS, which subsequently executes the or-

der; in practice order changes occur while a job is already being

worked on in prepress production. These can be values that are not

problematic, such as the number of copies (prepress must gener-

126 Prepress

ate more sets of plates due to the lack of durability of press plates

with a high volume), as well as things that do affect them directly

such as color or on which printing press the job will be printed. In-

deed there is an UpdateJDF command, which could be sent from

the MIS to the prepress system, yet only now are users beginning to

implement these options. Naturally, in practice, it commonly goes

the other way: A prepress operator changes things, and the oper-

ator should inform the MIS so the production path would not be

in two separate versions in the JDF description. The problem with

JDF updates is only at the beginning of being solved so far and will

surely be an important issue in the coming years.

In the MIS to Prepress ICS, GrayBoxes are mainly defined as infor-

mation containers, which the MIS builds and must be filled out

with details from prepress. There are a total of 11 of these Gray-

Boxes:

Rules-Based Automation

With RBA, one can affect and further automate the workflow

of Prinergy outside of the normal Prinergy user interface. This

can be done with a graphical tool to create rules. With a rule,

an event that can occur in Prinergy is associated to an action.

For example, one could specify that if a fatal error occurs while

checking the data (in Prinergy jargon: when refining), a speci-

fied person in the business receives an email message about it.

So you can organize the import of the content data in the Pri-

nergy system via a hot folder, allow data proofing in the back-

ground, and only intervene manually in the case of a failure

upon receipt of the email.

Another example: using a naming convention for the file names

allows you to place the pages on the layout automitacally. An

RBA rule captures the “Sheet Filled” event and the output is au-

tomatically fed to a form proofer.

Via RBA rules, third-party software can also be integrated into

the Prinergy environment. In addition, you can also define work-

flow controls with the Visual Basic computer language using

graphical RBA tools .

127Chapter 9

• PrepressPreparation

• ImpositionPreparation

• ImpositionProofing

• ImpositionRIPing

• PlateSetting

• PlateMaking

• ImpositionSoftProofing

• PageProofing

• PageSoftProofing

• ContentCreation

• ProofAndPlateMaking

In order to describe the prepress workflow, these GrayBoxes could

also be assembled like building blocks, and, as is usual with build-

ing blocks, there are large and small ones. Based on the activity

diagram in Figure 9.2, we clarify this somewhat nebulous analogy.

A typical workflow is sketched out showing schematics for each

task (preview image, form proof, plate) in each case, newly RIPed.

The RIP processes, however, are very different. While the preview

image has perhaps a resolution of 72 ppi and the form proof is

generated at 600 ppi, for plates it must reach the addressing res-

olution of the imagesetter, which is usually 2400 or 2540 dpi. Fur-

thermore, separated images are required for plate imaging; in con-

trast, the form proof requires composite images. A preview image

is sometimes separated and sometimes a composite depending

on the intended use.

RIP
preview image

RIP
form proof

RIP
plate

Imposition

Layout
definition

Form proof
printed

Plate
set

Data
preparation

Figure 9.2

Prepress activities flowchart

(commercial printing)

128 Prepress

The activities in Figure 9.2 are also reflective of the GrayBoxes:

• PrepressPreparation: Data Preparation

• ImpositionPreparation: Definition of imposition layout

• ImpositionProofing: Imposition, RIPing the form proof,

form proof output

• ImpositionRIPing: Imposition, plate RIPing; also

optional: RIPing the preview image

• PlateSetting: Plate burning

The GrayBox PlateMaking is to some extent a combination of

ImpositionRIPing and PlateSetting and therefore a large “building

block” which makes both of the smaller ones redundant. An even

larger one is the GrayBox ProofAndPlateMaking, which is com-

prised of ImpositionProofing and PlateMaking.

The MIS to Prepress ICS defines an attribute for each GrayBox, but

above all, it defines the required input and output resources as

well as their attributes. The three GrayBoxes ImpositionRIPing, Pla-

teSetting, and PlateMaking are

presented with their resources

in Figures 9.3 to 9.6, whereby

PlateMaking has already been

illustrated in Figure 6.18. Nor-

mally ImpositionRIPing and Plate-

Setting are daisy chained and

the blue-outlined RunList re-

source, which typically repre-

sents the screened separations

in TIFF format, forms the hand-

off between the two. Figure

9.6 shows how the GrayBoxes

PlateMaking, ImpositionRIPing,

and PlateSetting are comprised.

Of course, here the output from

ImpositionRIPing, as far as it

doesn’t serve as input for Plate-

Setting, also occurs as output

from PlateMaking. We have

outlined these two Preview re-

sources in red for clarification.

In addition, PlateMaking must

comprise all input resources

Imposition
RIPing

Preview
(composite)

RunList
(RIPed
data)

Layout

Device

Colorant-
Control

Interpreting-
Params

RunList
(Document)

RunList
(Marks)

Preview
(separated)

Figure 9.3

GrayBox ImpositionRIPing

129Chapter 9

from ImpositionRIPing and Plate-

Setting, but the blue-outlined

RunList resource is only de-

picted as an intermediate result.

An MIS can also describe the

workflow in prepress differ-

ently, as one can see in Figure

9.6, where the arrows simply

symbolize the result of the Gray-

Boxes. Depending on the Man-

ager’s, which is to say the MIS,

love of detail, different GrayBox

drawings are built. The Worker,

that is to say the workflow sys-

tem in prepress, must be able

to interpret all of the versions

in order to convert them to JDF

process nodes in the course of

production.

Also several incremental levels

are defined in the MIS to Pre-

press ICS. All of the introduced

GrayBoxes are defined in Level

1 (and therefore automatically

also for Level 2). Level 2 meets

additional conventions for ver-

sioning, such as that which oc-

curs in multiple languages of

a product, and also for com-

plex production in which differ-

ent parts of the production are

brought together on the same

sheet (e.g., cover and contents).

Finally, it should be noted that

the MIS to Prepress ICS paper

contains the requirements of

the other ICS documents upon

which it is based. So it is as-

sumed Base ICS and JMF ICS

are in Level 2—and indeed for

both stages of the MIS to Pre-

press ICS. The steps, therefore,

can also be different. With MIS

PlateSetting
Exposed
Media

RunList
(RIPed
data)

Media

Device

Colorant-
Control

PlateMaking
Preview

(composite)
Layout

Device

Colorant-
Control

Interpreting-
Params

RunList
(Document)

RunList
(Marks)

Preview
(separated)

Media

Exposed
Media

Figure 9.5

The platemaking GrayBox

includes the functionaility

of the ImpositionRIPing and

Platesetting GrayBoxes

Figure 9.4

GrayBox Platesetting

130 Prepress

ICS, which is likewise naturally a precondition for the MIS to Pre-

press ICS, the situation is actually as one would expect: Level 1 from

MIS ICS is a prerequisite for Level 2 of MIS to Prepress ICS, and Level

2 of MIS ICS is a prerequisite for Level 2 from MIS to Prepress ICS.

9.2 Assembly

Montage consists of the following three steps that are executed

in succession:

• Imposition layout creation

• Allotting the sides/tiling on the imposition layout,

• Imposition, that is the calculation of a data structure that

contains all of the printing data for the exposure of one or

more plates. The individual pages are also calculated together

with the marks (typically into a PDF data structure).

Imposition-
RIPing

PlateSetting

Imposition-
Proofing

PrePress-
Preparation

Imposition-
Preparation

PlateMaking

Imposition-
Proofing

PrePress-
Preparation

Imposition-
Preparation

ProofAndPlate-
Making

PrePress-
Preparation

Imposition-
Preparation

Figure 9.6

Three different options for

linking GrayBoxes

131Chapter 9

All three steps were completed earlier in the assembly software.

Meanwhile, it is common to carry out the imposed sheet creation

in this software, while the mapping occurs in the WMS background

and the imposition occurs in the background on a powerful work-

flow server. However, due to the ever-increasing integration of as-

sembly and WMS software, the split is further blurred.

This section is mainly about the creation of the imposition layout,

commonly also called the sheet layout. The tasks are typically:

• Placement of the print sheet on the plate

• Definition of sheet and page sizes

• Application of the imposition schema

• Definition of the margins and spacing (gripper edge,

gluing edge, trim, etc.)

• Placement of control elements (color bar/control

strips, register, fold, cutting, collating and page marks,

sheet signatures, etc.) on the print sheet and plates

The order management system can already provide much

of this information. We have already extensively analyzed

the StrippingParams resources in the previous chapter

which contained exactly this information. Figure 9.7 also

gives a highly simplified workflow structure. We would

like to stress that not all processes and resources neces-

sarily represent the JDF structures, instead only the gen-

eral tasks reflected in the workflow.

A sizable potential for automation is included in this se-

quence. Without JDF connections to an order manage-

ment system, all of the specifications for the sheet lay-

out must be entered manually in the assembly software,

namely by the creation of a new imposition layout. Of

course, the imposed sheet could be saved and reused

with minor modifications for orders with the same struc-

ture. However, with a JDF integration between the or-

der management system and prepress, all of the values

can be directly transposed from the order management

system, and the imposition layout can be generated au-

tomatically. In the offset world, admittedly, each press

sheet layout created this way is controlled by an opera-

tor and has minor details changed. A prerequisite for this

method is that the control marks must be positioned rel-

MIS

Imposition sheet
creation

(Stripping)

Imposition
(Imposition)

Sheet layout
(Layout)

Stripping-
Params

Data sheet
(RunList)

Collating

Ordered
pages

Figure 9.7

The assembly process

resource model

132 Prepress

ative to the sheet size and not, as was common earlier, with fixed

coordinates placed on the sheet. Sheets of differing sizes require

the marks in different positions, and since these positions are not

available from the order management system (it only has specifi-

cations for the sheet size), the marks must be automatically ad-

justed. This process is actually defined and carried out by the as-

sembly software. From JDF 1.4 and higher, dynamic marks can be

characterized in the StrippingParams from the MIS and the strip-

ping process must not have run yet. However, it is necessary that

both the staff and also the software fill out the corresponding re-

quirements when the order is generated.

We will now more closely analyze the JDF structure in Figure 9.7.

In Figure 8.7 the process for the creation of the imposition layout,

namely stripping, was already presented with a single-input and

single-output resource. Figure 9.8 now reflects the situation more

thoroughly. In this figure a “?”

denotes optional resources. As

you can see, we have now also

assimilated the input resources

TransferCurvePool, Colorant-

Control, and RunList (Docu-

ment) for the Stripping process.

The TransferCurvePool resource

primarily contains the trans-

fer curves, also known as tonal

value passing curves or process

calibration curves. They are re-

ally only important for the RIP

process, and therefore we will

describe them in more detail in

Section 9.4. To this end, the re-

source is only used (if necessary)

in order to receive information

about the coordinate transfor-

mations between imposition

layout and plate. In Colorant-

Control the colors of the sep-

arations are configured so that

the corresponding color marks

can be generated on the im-

position layout as well. Finally,

it is possible that a RunList re-

source, which describes the

document to be printed, would

Figure 9.8

Assembly in the JDF model

Stripping
Params

Assembly

Imposition

RunList
(Sheet)

Transfer-
CurvePool?

Colorant-
control?

RunList?
(Document)

RunList(?)
(Document)

Layout
RunList?
(Marks)

Stripping

133Chapter 9

be changed in the Stripping process when the pages are imported.

Then one could build, or control as the case may be, the impo-

sition layout under visual control of the print data on the screen.

The RunList resource could, in this case, be passed to the Imposi-

tion process. Which means that this resources can, but must not

be, output from the Stripping process (because of the “?”). In any

case, a RunList (wherever it comes from) must be an input resource

from the Imposition process; otherwise it would have nothing to

impose. In this respect we have again bracketed the question marks

in the figure. Typically the Stripping process will also generate a file

(or multiple files), which contains all of the control marks on the

plate in the correct positions. These are described in the RunList

(Marks) resource. Function and position of control marks can in-

deed be provided via JDF, but not their appearance. In this respect

it must occur separately—in PDF, for example.

Finally we wish to show an example for a Layout resource in Fig-

ure 9.9. in which a placeholder for six pages is defined. Thus, a

placeholder is a ContentObject in the language of JDF. As you

can see, the layout is partitioned according to the key resource

SignatureName SheetName Side. This must be because the place-

holder for the sides and the position of the marks can be differ-

ent from signature to signature, from sheet to sheet , and also be-

tween front and back. The layout of the example sheet is sketched

out in Figure 9.10. Notice that in our example the size of the Sur-

faceContentsBox is exactly the size (Dimension) of the plate (Me-

dia). The zero point for both is at the bottom left. In general the

SurfaceContentsBox could also be smaller, for example, the small-

est rectangle that includes all of the printed elements on the sheet

(= BoundingBox). The attributes of ContentObject are as follows:

CTM:

The Current Transformation Matrix was already introduced in Chap-

ter 4.3 as a Dictionary entry in PDF. This idea, which originally

stemmed from the PostScript world, has a similar function in JDF.

It also defines the position, orientation, and size of a placeholder

on the SurfaceContentsBox and therefore here on the plate. Also

see the exercise at the end of the chapter.

ClipBox:

The size and position of a placeholder is defined here in DTP points.

All elements of a page outside the ClipBox are cut off. The position

refers to the SurfaceContentsBox.

134 Prepress

Figure 9.9

JDF code of a layout

resource

<Layout Class="Parameter" DescriptiveName="Status" ID="_300"

PartIDKeys="SignatureName SheetName Side" Status="Available">

<Layout Name="Signature-1" SignatureName=" Signature-1">

<Layout DescriptiveName="Cover" Name="Cover" SheetName="Cover"

SourceWorkStyle="WorkAndBack"

SurfaceContentsBox="0 0 2111.81 1714.96">

<Media Class="Consumable" Dimension="2111.81 1714.96"

MediaType="Plate" />

<Layout DescriptiveName="Recto" Side="Front">

<ContentObject CTM="1 0 0 1 316.06 188.50"

ClipBox="307.55 180 1036.06 537.16"

PositionX="Center" PositionY="Center"

TrimCTM="1 0 0 1 316.06 188.50" TrimSize="711.49 340.15" />

<ContentObject CTM="1 0 0 1 1084.25 188.50"

ClipBox="1075.74 180 1804.25 537.16"

PositionX="Center" PositionY="Center"

TrimCTM="1 0 0 1 1084.25 188.50" TrimSize="711.49 340.15" />

<ContentObject CTM="1 0 0 1 316.06 585.35"

ClipBox="307.55 576.85 1036.06 934.01"

PositionX="Center" PositionY="Center"

TrimCTM="1 0 0 1 316.06 585.35" TrimSize="711.49 340.15" />

<ContentObject CTM="1 0 0 1 1084.25 585.35"

ClipBox="1075.74 576.85 1804.25 934.01"

PositionX="Center" PositionY="Center"

TrimCTM="1 0 0 1 1084.25 585.35" TrimSize="711.49 340.15" />

<ContentObject CTM="1 0 0 1 316.06 982.20"

ClipBox="307.55 973.70 1036.06 1330.86"

PositionX="Center" PositionY="Center"

TrimCTM="1 0 0 1 316.06 982.20" TrimSize="711.49 340.15" />

<ContentObject CTM="1 0 0 1 1084.25 982.20"

ClipBox="1075.74 973.70 1804.25 1330.86"

PositionX="Center" PositionY="Center"

TrimCTM="1 0 0 1 1084.25 982.20" TrimSize="711.49 340.15" />

<MarkObject CTM="1 0 0 1 0 0" ClipBox="0 0 2111.81 1714.96">

<RegisterMark Center="1900.86 661.94" Class="Parameter"

Rotation="0" />

<RegisterMark Center="210.94 661.94" Class="Parameter"

Rotation="0" />

<ColorControlStrip Center="1059.44 1347.70"

Class="Parameter" Rotation="0" Size="1486.18 28"

StripType="FOGRA_6_F74_740x10" />

</MarkObject>

</Layout>

 ...

</Layout>

</Layout>

</Layout>

135Chapter 9

PositionX, PositionY:

Nature of the content orienta-

tion within a placeholder.

TrimSize:

The size of a TrimBox, which

means the pages after cut-

ting or the final format of the

printed product. The size is

specified in DTP points.

TrimCTM:

Positioning of a TrimBox on the SurfaceContentsBox.

Only one color bar “FOGRA_6_F74_740x10” with its position as

well as two register marks are entered here as marks (MarkObject).

One thing that seems to continue to be important: The Layout re-

source was especially changed in the different JDF versions. As a

result, at first glance the JDF descriptions from older versions ap-

pear totally different than they are presented here.

9.3 Trapping

In multiple-color offset printing, the overprinting may not end up

being entirely in alignment. These registration variations mainly oc-

cur due to paper stretch, but also due to tolerances in the press. A

consequence of this inaccuracy is a “misregistration,” as shown in

Figure 9.11. For this reason, owing to circumstances where trap-

ping (overlapped) adjacent areas are enlarged; the general rule

with translucent colors is that the lighter colors overlap the darker

colors; see Figure 9.12. Then with small registration variations

there is no more misregistration. The flip side of the coin is that,

of course, the trap contours

may be disturbingly noticeable.

In this respect try to keep the

trap width as marginal as pos-

sible, namely equal to the ex-

pected maximum register differ-

ence. Only when a black object

is overlapped is the trap not vis-

ible and you can choose a larger

trap width. With opaque colors

like gold or silver, the lightness

rule is no longer valid. Instead,

1

3

5
Media

Dimension

ContentObject

TrimSize

ContentObject

ClipBox

2

4

6

Figure 9.10

TrimSize and ClipBox as

attributes of ContentObject

TrapTrap
Figure 9.11

Misregistrations caused

by register variations if no

trapping exists

Figure 9.12

The lighter colors overlap

the darker colors.

136 Prepress

for obvious reasons, a translucent color should never overlap an

opaque color, but rather the other way around. With two adjacent

opaque colors, the first printed color overlaps the other.

Many trapping details, such as the trap width, must be defined.

There is no universally valid value since it depends on many factors

(paper, press, printing method, etc.). These Trapping details can be

defined in the TrappingDetails resources which is an input resource

of the Trapping process (Figure 9.13). In ColorantControl one finds

the color assignments for the translucent and opaque colors in the

print product. What should happen when the required fonts are

no available (abort process, choose alternate font, etc.) is entered

in the FontPolicy resource, and finally the RunList contains infor-

mation about the print data. The result of the Trapping process is

also a RunList, one that shows the trapped content data.

Figure 9.14 shows an example

for a TrappingDetails resource,

as they could be sent to a trap-

ping engine. The practice shows

that a trapping engine, similar

to the RIP, cannot be configured

independently of the WMS. In

other words, the interface be-

tween the trapping engine and

the prepress system is vendor-

specific even if it is based on JDF.

Now we would like to explain

the elements and attributes

from Figure 9.14. DefaultTrap-

ping can be adjusted as to

whether the whole page (value

equals true) or only certain zones (value equals false) are trapped.

In the subelement TrappingOrder, the sequence is entered as to

how the colors lay on top of each other—they should correspond

to the print sequence. As was just explained, the sequence of

opaque colors is of most importance. The many small details about

trapping are stored in the TrappingParams element, of which we

will only show a small portion.

The BlackColorLimit attribute specifies at which raster value a gray

area is trapped according to the black color rules—here at 95%

tonal value. BlackDensityLimit is at what certain density a color is

considered analogous to black. The value of BlackWidth deter-

mines that the trap width for black is 1.3 times that of the trap-

Figure 9.13

Trapping process resources

Trapping RunList

RunList

Trapping-
Details

FontPolicy

Colorant-
Control

137Chapter 9

ping width for the other colors. Whether adjacent images or im-

ages on top of other objects (graphics, fonts) should be trapped

can be defined in ImageToImageTrapping and ImageToObjectTrap-

ping. In the example the borders between images and objects are

also trapped (value true); one specifies how it should happen in Im-

ageTrapPlacement. “Normal” is chosen here, which mean that the

usual rules apply, which are based on the lightness of the translu-

cent colors and the print sequence order of the opaque colors. One

can also choose, as in the example, whether the object is basically

overlapped into the image (value equals Choke). A color separa-

tion should already have a significant tonal value difference with

its two neighboring areas and is trapped there. Otherwise, it could

even happen, in extreme cases, that a gradient would be trapped.

In StepLimit the limit is set. Finally, the trap width is declared in

TrapWidth. The value is given in DTP points.

9.4 RIPing and Platemaking

The production system has the task of resolving the GrayBoxes

which were written by the MIS into individual processes like Plate-

Making (see Figure 6.17) or ImpositionRIPing, and PlateSetting

(see Figures 9.4 and 9.5) into one or more combined processes.

Of course, combinations of the three possibilities are also allowed.

The processes that arise are, in principle, put together like puz-

zle pieces in which an output resource of one process is the input

process of the next process and so on. These are mostly handled

as RunList resources; thus information about the intermediate re-

<TrappingDetails Class="Parameter" DefaultTrapping="true" ID="_333"

Locked="false" Status="Available">

<TrappingOrder>

<SeparationSpec Name="Black" />

<SeparationSpec Name="Cyan" />

<SeparationSpec Name="Magenta" />

<SeparationSpec Name="Yellow" />

<SeparationSpec Name="Gold-Spot color" />

</TrappingOrder>

<TrappingParams

BlackColorLimit="0.95"

BlackDensityLimit="1.6"

BlackWidth="1.3"

ImageToImageTrapping="false"

ImageToObjectTrapping="true"

ImageTrapPlacement="Normal"

StepLimit="0.25"

TrapWidth="0.25"

 ... />

</TrappingDetails>

Figure 9.14

Excerpt from the

TrappingDetails resource

138 Prepress

sults’ data. It should be noted, however, that with com-

bined processes these intermediate results may also be

missing. Some of these puzzle pieces were already pre-

sented like Interpreting, Rendering and Screening (see

Figure 3.10); others were at least mentioned, like Impo-

sition and ImageSetting (Section 6.1). In Figure 9.15 a

possible structure for the RIP process and for plate imag-

ing are presented fully again. We will only briefly touch

on the previously unhandled processes.

The ContoneCalibration process is responsible for the

application of the transfer curve at the RIP. It con-

tains a bytemap for each separation from the Ren-

dering process, thus a halftone (all tonal values be-

tween 0% and 100%) in each process color or also

spot colors. The outcome of the process is a data

structure in the same form, but in this case only the

tonal values would be changed. How the tonal val-

ues are changed is specified in the TransferFunction-

Control resource. The description of the transfer curves

is similar to the description in PPF (see Figure 4.11). In

fact, more curves per separation can also be used here.

So the plate output is often linearized with the help of

a transfer function, which means it affects a tonal value

adjustment that produces no or minimal difference be-

tween the input tonal values of the RIPs and the tonal

values of the developed plate. Besides the linearization

curve, which is only dependent on the platesetter, the

plate and, under the circumstance the developing pro-

cess, there is still the actual transfer curve for the press,

which is dependent on many parameters like the out-

put screen, the substrate, the printing press, the press

conditions, and the colors. Both transfer curves are cal-

culated against each other and run.

The FormatConversion process does exactly what its

name says: it converts one data format to another. Here

a vendor-specific bitmap is typically converted into a TIFF

file, which is the input for the upstream control software

of the CTP imagesetter. Because this data contains bit-

maps, thus binary states of pixels (only black/white and

no gray tones), the data format is called “TIFF-B.” The

format is a quasi standard between workflow manage-

ment systems in prepress and imagesetters. This makes

it possible to connect different imagesetters to a WMS

Runlist
(Marks)

Layout

ImageSetting

Exposed-
Media

FormatConversion

RunList
(TIFF)

Screening

RunList
(Bitmap)

Contone-
Calibration

RunList
(Bytemap)

Rendering

RunList
(Bytemap)

Interpreting

RunList
(DisplayList)

Imposition

Runlist
(Sheet)

Colorant-
Control

Interpreting-
Params

Image-
Setting-
Params

Media
Transfer-

CurvePool

Device

Format-
Conversion-

Params

Screening-
Params

Transfer-
Function-
Control

Rendering-
Params

Layout-
Preparation-

Params

RunList
(Pages)

FontPolicy

Media

Screening-
Params

Figure 9.15

JDF model for platemaking

139Chapter 9

without much effort. The result is that the imaging of plates is of-

ten completely separated from the WMS. The CTP imagesetter and

its upstream software are then generally not JDF/JMF-capable. In

this case the JDF workflow is already generating a TIFF-B file con-

currently with the completion of the platesetting and issues a cor-

responding message. This is also explicitly allowed by the MIS to

Prepress ICS.

Figure 9.16 presents a combined process matching Figure 9.15.

However, only the ResourceLinkPool is depicted, not the Resource-

Pool. Notice that the red-outlined RunList resources in Figure 9.15

are not to be found in the ResourceLinkPools links, nor are the re-

<JDF Activation="Active" ID="_001" JobPartID="_1003.I" Status="Part"

Type="Combined" Types="Imposition Interpreting Rendering ContoneCalibration

 Screening PreviewGeneration FormatConversion ImageSetting" Version="1.3">

...

<ResourceLinkPool>

<RunListLink CombinedProcessIndex="0" ProcessUsage="Document"

Usage="Input" rRef="_77" />

<RunListLink CombinedProcessIndex="0" ProcessUsage="Marks"

Usage="Input" rRef="_21" />

<LayoutPreparationParamsLink CombinedProcessIndex="0" Usage="Input"

rRef="_581" />

<LayoutLink CombinedProcessIndex="0" Usage="Input" rRef="_99" />

<ColorantControlLink CombinedProcessIndex="1" Usage="Input"

rRef="_83" />

<FontPolicyLink CombinedProcessIndex="1" Usage="Input" rRef="_583" />

<TransferCurvePoolLink CombinedProcessIndex="6" Usage="Input"

rRef="_71" />

<InterpretingParamsLink CombinedProcessIndex="1" Usage="Input"

rRef="_85 " />

<RenderingParamsLink CombinedProcessIndex="2" Usage="Input"

rRef="_86" />

<MediaLink CombinedProcessIndex="2" ProcessUsage="Paper" Usage="Input"

rRef="_79" />

<ScreeningParamsLink CombinedProcessIndex="3 4" Usage="Input"

rRef="_89" />

<TransferFunctionControlLink CombinedProcessIndex="3" Usage="Input"

rRef="_34" />

<ImageSetterParamsLink CombinedProcessIndex="6" Usage="Input"

rRef="_94" />

<DeviceLink CombinedProcessIndex="6" Usage="Input" rRef="_286" />

<MediaLink CombinedProcessIndex="6" ProcessUsage="Plate" Usage="Input"

rRef="_3085" />

<FormatConversionParamsLink CombinedProcessIndex="5" Usage="Input"

rRef="_47" />

<ExposedMediaLink CombinedProcessIndex="6" ProcessUsage="ExposedMedia"

Usage="Output" rRef="_81" />

</ResourceLinkPool>

...

</JDF>

Figure 9.16

Platemaking combined

processes

140 Prepress

sources themselves in the ResourcePool which is permitted for com-

bined processes. By way of example, the resource FormatConver-

sionParams is only shown in Figure 9.17. There you can see that a

related process should produce a TIFF format image out of an ap-

plication-specific byte stream.

With the help of a similar JDF model the concept of a digital print-

ing press can be taken on. In practice, however, it is common that

digital print orders are collected in the front end of the digital print-

ing press. Then someone, namely a machine operator, can inter-

vene before printing in order to, for example, sort the orders ac-

cording to paper type.

We also want to end this section with a general word of advice: as

mentioned earlier, the JDF communication between the compre-

hensive WMS, the RIP, and a plate-setter is commonly not realized

with truly open interfaces. This means a manufacturer may use JDF

(and also other communications options such as databases), but

only with the goal (quite legitimate) of controlling their own soft-

ware modules with it. Third-party software is not able to be bolted

on here. To this extent, the result of our research is not very sur-

prising, through it we have ascertained that JDF is certainly em-

ployed “creatively” here. In particular one would find combined

processes at this point in which the intermediate results of the pro-

cess need not be performed. Then why, for example, should the

storage positions of the intermediate results be entered in RunList

resources, if the WMS has a set procedure and the jobs are de-

posited in a set folder or database structure or the information lies

only in memory (RAM)?

9.5 Proof and Press Approvals

A proof should depict, in advance, as accurately as possible, the re-

sult of the print run. Different proof methods are used:

• Color proof, color binding proof, contract proof (digital)

• Imposition proof, also known as form proof

• Soft proof

<FormatConversionParams Class="Parameter" ID="_47" Status="Available">

<FileSpec Class="Parameter" MimeType="application/octet-stream"

ResourceUsage="InputFormat" />

<FileSpec Class="Parameter" MimeType="image/tiff"

ResourceUsage="OutputFormat" />

</FormatConversionParams>

Figure 9.17

FormatConversionParams

resource

141Chapter 9

• Screen proof

• Machine proof or contact print (found, if ever, in gravure

printing or even flexographic printing)

• Analog proof (based on film)

The first three technologies especially play an important role here,

while the last two are only seldom employed today.

The creation of a proof is a part of comprehensive quality man-

agement because, naturally, other things are also checked such as

printing plates, press sheets from the press run, or components of

the print product. The purpose of this is to undergo a certain ac-

ceptance procedure by which a customer/client or also an inter-

nal employee decides if the test piece is acceptable or must be re-

jected. Resources for ongoing production are approved or rejected

in the JDF language. Such resources typically, in this section in the

book, are ExposedMedia, which represent the hard copy of a color

proof or form proof, or also RunLists, which depict the image data

for soft proofing.

Figure 9.18 illustrates this situation once again. Typically you would

have one or more resources that should be approved. The Approv-

alParams resource contains detailed information about the ap-

proval process, namely in the nitty gritty of who can issue the ap-

proval (described by the subelement Contact) and which roles this

person or people take up there, for example, who can overwrite

another person’s approval and the like. The output of the Approval

process consists of the approved, or as the case may be, unap-

proved, resources. The Status attribute has the value of Draft be-

fore the Approval process, followed by either a status of Available

or Rejected. It is then noted in ApprovalSuccess exactly who signed

off or rejected the proof, possible comments on the proof, and,

if appropriate, a link to the file

which contains the signature of

the approving person.

The Approval process can

then be defined as the last

stage of a combined process.

A hardcopy proof from a dig-

ital printer is therefore a com-

bined process, which ends

with the processes “Digital-

Printing Approval,” as is seen

Approval
Resource

(accepted)

Resource

Approval-
Params

Approval-
Success

Resource
(not

accepted)

Figure 9.18

Approval process in JDF

142 Prepress

in Figure 9.19. For a machine proof, the combined process

would include ConventionalPrinting and ImageSetting instead of

DigitalPrinting. The processes ConventionalPrinting as well as

DigitalPrinting will be discussed in more detail in the following

chapter.

As a general rule for color proofs, but also of course for plate-

setting, color space transformations are required. Usually a color

profile is defined which describes the color characteristics of de-

vices. First, device-specific RGB data are available for the input data

(digital camera, scanner) which must be converted into device-

independent color values with the help of a profile. A second pro-

file that describes the printing process is then still needed for the

production of print forms. Yet another profile is required for the

production of a color proof, namely the proofer profile.

The color space transformation takes place in JDF through the

ColorSpaceConversion process, which typically occurs before the

Trapping Process. The most important input resource is the Color-

SpaceConversionParams, in which the location of the color pro-

file is entered. Example 9.20 shows one such resource with its el-

ements and attributes are explained as follows:

<JDF Category="DigitalPrinting" ID="_1" JobID="_2" Status="Ready"

Type="Combined" Types="LayoutPreparation Imposition Interpreting Rendering

 ImageSetting Approval"...>

...

</JDF>

Figure 9.19

Approval process for a

proof

<ColorSpaceConversionParams ColorManagementSystem="ADBE" ID="R6"

Class="Parameter" Status="Available">

<ColorSpaceConversionOp SourceCS="Gray" SourceObjects="All"

Operation="Untag" />

<ColorSpaceConversionOp SourceCS="RGB" SourceObjects="All"

IgnoreEmbeddedICC="false" RGBGray2Black="true" RGBGray2BlackThreshold="1"

Operation="Tag" RenderingIntent="Perceptual" >

<FileSpec ResourceUsage="SourceProfile"

URL="file://Server1/ICCProfiles/sRGBprofile.icm" />

</ColorSpaceConversionOp>

<ColorSpaceConversionOp SourceCS="CMYK" SourceObjects="All"

Operation="Untag" />

<FileSpec ResourceUsage="FinalTargetDevice"

URL="file://Server1/ICCProfiles/CoatedFOGRA39.icc" />

</ColorSpaceConversionParams>

Figure 9.20

Information on color space

transformation in a soft

proof

143Chapter 9

ColorManagement System:

Here the preferred vendor-specific system is defined for color space

conversion (“Adobe”).

FileSpec:

In this attribute the ICC profile defining the target values are

entered.

ColorSpaceConversionOp:

The operations for color space transformation are described in

more detail, where

• In SourceCS the output color space is established.

• In SourceObject the object type is specified as to

which operation should be performed like Text, LineArt,

ImagePhotographic, etc., or also All if all Objects are affected.

• In Operation, whether the profiles should be attached (tag) to

the graphic elements or instead the attached profile should be

removed (untag) is defined.

• IgnoreEmbeddedICC specifies whether embedded profiles

should be ignored (true) or not (false).

• In RGBGray2Black it can be specified whether RGB gray

should be (true) mapped to the black channel K with a CMYK

conversion, or not (false), where in the case of true

• The attribute RGBGray2BlackThreshhold can limit the tonal

value dependent process: with a value of 0, only the RGB black

is in full tone; with a value of 0.5, all RGB gray tonal values go

to 50%; with the value of 1 all RGB graytones are mapped to

the K channel.

• In RenderingIntent the priority for the usual gamut mapping is

determined (conversion from one color space to another).

In the example, all of the color profiles related to the CMYK or

gray color space were therefore removed from the graphic ele-

ments, and all of the RGB elements were associated to a specific

profile, provided that they do not yet have their own. The color

space transformation describes a process for offset platemaking.

144 Prepress

Exercise:

Draw an imposition layout with the data from Figure 9.9. Note the

definition of the transformation matrices as shown in Figure 9.21.

First, each point (x,y) in 2-dimensional space is formally written as

3-dimensional point (x,y,1) (to also allow for shifts). The transfor-

mation matrix is then consequently a 3@3 matrix where the right

column has the fixed values 0,0,1. Therefore, these three values

are always the same and not always incorporated in the Current

Transformation Matrix (CTM) and there are only 6 values left. Af-

ter the matrix multiplication, the third dimension can be removed

and one can see that, for example, the CMT = “1 0 0 1 a b” really

causes only a shift of coordinates around the value (a,b).

 a
11
 a

12
 0 a

11
x + a

21
y + a

31

x y 1 a
21
 a

22
 0 = a

12
x + a

22
y + a

32

 a
31
 a

32
 1 1

CTM = „a
11
 a

12
 a

21
 a

22
 a

31
 a

32
“

CTM = „1 0 0 1 a b“ corresponds to the offset of (x,y) at (x+a, y+b)

Figure 9.21

Current transformation

matrix

145Chapter 10

10 Press

At first glance it is paradoxical that there are only three different

processes in the area of print: ConventionalPrinting (printing with

physical press forms such as offset, flexo, gravure, and screen print-

ing), DigitalPrinting, and Varnishing. In comparison, there are many

more processes in prepress and in post processing. The reason for

this situation is that, in the area of print, processes are independent

of each other and can be carried out in different sequences (com-

pare to Section 3.3), which differs from prepress and post process-

ing where the work processes are very intertwined and not isolated.

In this chapter, we will only go into the JDF nodes that concern

printing. Previously, especially in Chapter 9, we handled general

communication between JDF/JMF devices (in this case the control

station of a printing press) and Agents and Controllers (either MIS

or production’s workflow server). So that the new JDF nodes do

not seem to be taken so completely out of context, we will briefly

recount the typical communication scenario again: where a respon-

sible Agent/Controller drops a JDF file in a hot folder for the print-

ing press, which is regularly polled by the JDF module of the print-

ing press. Alternatively, the Agent/Controller sends a JDF command

(SubmitQueueEntry) to the control station, which, in turn, uses

the included URL to download the JDF file from a file server which

both parties have access to. The JDF file contains not only the usual

things like customer name (CustomerInfo) and order number (Jo-

bID), but also all of the resource descriptions which are required

for the printing process and will be discussed in the following sec-

tions. For data collections the Agent/Controller must request a per-

sistent communication channel (Persistent Channel) with the con-

trol panel of the printing press either by means of JDF (NodeInfo)

or with a JMF message (Subscription). It will “build up” the chan-

nel, confirm it with a JMF Response, and periodically send the de-

sired JMF signals over HTTP to the Agent/Controller. This is done

until the Agent/Controller sends a command to indicate that it now

wants to stop receiving the signal (StopPersistentChannel). The sig-

nals are neither confirmed by the Agent/Controller nor cached by

the control panel, which is referred to with a seemingly militaris-

tic yet apt expression: “fire and forget.” During the printing pro-

cess, the JDF control station further writes its audit log as Audit el-

ements in the AuditPool of the JDF file. Once the job is complete,

the printing press control system finally returns the modified JDF

file back to the Agent/Controller, which again can happen via spe-

cial hot folder or using a JMF message.

146 Press

10.1 Conventional Printing

Some conventional printing presses allow the processes of inline

prepress or finishing, such as digital offset machines which can

create their own plates or web offset machines which can also

fold and cut. However, the JDF process ConventionalPrinting does

not include such processes, and one must form combined pro-

cesses with processes from prepress or from postpress. For dig-

ital printing it would be the combined process of ImageSetting

and ConventionalPrinting. With web offset printing it would be

the combination of both processes ConventionalPrinting and We-

bInlineFinishing.

Many parameters for the areas of printing and postpress are de-

fined while in prepress; comparatively printing has very simple inter-

faces. It receives specifications from MIS and prepress, and outside

of press sheets and status updates of its activities, it produces noth-

ing for them. Therefore, it is not surprising that the Conventional-

Printing process has many (optional) input resources, but only one

output resource.

Which type of information, specifications, and preparations from

other departments (above all, MIS or prepress) are meaningful for

the printing department? Primarily, regardless of whether they re-

ceive this data by means of JDF or in any other form:

JDF Systems for Offset Printing (2009)

Hersteller: Product:

Akiyama InkZone

Goss International Goss Web Center

Heidelberger Druckmaschinen Prinect Press Manager

manroland printnet PressManager Sheetfed

Komori Lithographic Presses K-Station

König & Bauer AG (KBA) JDFLink for Logotronic

Mitsubishi Heavy Industries IPC Server II

Ryobi Druckmaschinen MIS Connection Software

Shinora Machinery Company Shinora CIP4 Center / Station

Sakurai InkZone Pefect

147Chapter 10

 1. Printing forms

 2. Ink

 3. Information about the substrate (size, paper grade, etc.)

 4. Determination about perfecting printing

 5. Determination about the colors for the job

 6. Administrative data (order number, customer, acceptance conditions,

circulation, delivery terms, etc.)

 7. Ink zone settings for offset printing

 8. Proof (form proof, contract proof, prototype proof, preview, soft proof)

 9. Positions of the control elements on the printed sheet

10. Determinations of the press conditions (Lab values or density of the

spot colors, dot gain, ICC profile targets, etc.)

Only the first six points in this list are actually obligatory, the next two are

widely used at least, but the last two play a special role. The positions

of the control elements, in many cases, are actually determined by the

printer and mandated according to the printing press and the press sup-

pliers. The inline or the offline measuring systems can read and interpret

the control elements only in certain places. Conversely, only a few mod-

ern machines can also receive the positions of the control elements as

metadata from the printing form setup and position the measuring instru-

ments accordingly. Also, the specification of the press conditions normally

occurs in the pressroom, at least in the standard world of offset printing.

In point 6 we have also included the deadlines for delivery of the finished

products, which is usually set with the incoming order. These still need

to be converted by planners in shift planning for individual work steps

during production. We want to address the following three possibilities:

• Scheduling is not based on JDF, but instead, for example, with a

planning board or with software which sends deadline lists to the

machine control panel over a vendor-specific protocol.

• The planning of the order sequence is performed in an MIS module,

and the scheduler sends the technical and administrative JDF order

dates under MIS control directly to the machine control panel.

• One of the material requirements planning departments assigned by

production receives the key data which are necessary for machine

scheduling from the MIS.

148 Press

The first case is not of interest for our subject. In the second case

the MIS sends the JDF job data in correct order straight to the con-

trol panel of the press, while in the third case the JDF goes first to

the production scheduling software. The JDF from MIS, therefore,

has different addressees and also different content.

In Figure 3.12 we have already presented the main inputs and

outputs for offset printing. In Figure 10.1 we show the same pic-

ture again, but now with the names of the JDF resources which

we have primarily introduced in the last chapters. We have not

yet listed some possible JDF in-

put resources because they are

only necessary in very special

situations. For example, if pre-

printed shells are processed, a

Component resource is required

at input. Or if double-sided ad-

hesive tape should be specified

in flexographic printing, which

is required for the assembly of

the cylinder or sleeve, an ad-

ditional Media resource of the

type MountingTape is required.

Other inputs, like the Preview

resource, are quite widespread

in order to depict the preview of

the sheet at the control panel of

the printing machine. We will il-

luminate the different resources

of the ConventionalPrinting pro-

cess in more detail, even some

of those that are not listed in

Figure 10.1

Print Parameters and Print Conditions

In the JDF model there is a distinction between print parameters

(ConventionalPrintingParams) and print conditions (PrintCondition).

There are some basic parameters for the setup of the printing press

lodged in the obligatory resource ConventionalPrintingParams.

Here the type of drying (UV, IR, heatset) can be given, determin-

ing the deactivation of the dampening system for waterless offset,

or designating the maximum speed in sheets per hour for sheetfed

offset or the revolutions per hour for web offset. Even the printing

processes (offset, flexo, gravure, or screen printing) and the print-

Conventional-
Printing

Component

Colorant-
Control

InkZone
profile

Layout

Exposed
Media
(Proof)

Exposed
Media
(Plates)

Media
(Printing

substrate)

Ink

Conven-
tional

Printing-
Params

PrintCondition

Figure 10.1

Offset print with its

resources

149Chapter 10

ing press type (sheetfed, web with one or more plates per cylin-

der, etc.) are specified. This very general information is usually set

to a fixed house standard or is implicitly indicated by the fact that

a job is assigned to a particular machine. In this respect the attri-

butes are not, in reality, playing a very large role. The usefulness is

seen rather in connection with the query of devices about the ca-

pabilities of the associated machine. The so-called DeviceCapabil-

ities will be presented at the end of Section 11.2. There are also

order-related parameters for a printing press which are stored in

this resource, such as WorkStyle —in which the type of perfecting

printing is specified. In Figure 10.2 one sees that WorkAndTurn is

entered as a value, which is often called “to turn” (in perfecting,

the front arrangement is the same as the back, which the side ar-

rangement changes; no plate change for the reverse printing). In

the resource it could also be written that a customer or an inter-

nal quality assurance representative may give approval to print to

the press. The status of the process ConventionalPrinting is then

set at Stopped and the status details are at WaitForApproval un-

til approval has given.

While ConventionalPrintingParams has very basic values avail-

able for the basic setup of a printing press, set points for color,

density, and dot gain for the press are in PrintCondition. You

can also specify spectrophotometric color measurements here

(color temperature, filters, 2-degree or 10-degree viewing an-

gle, measurement of wet or dry color, measure, measure-

ment base, etc.). In practice this resource has been little used

in offset printing in general since ISO Standard 12647 [24] was

printed and so far no order-related definition is required. Fig-

Figure 10.2

ConventionalPrintingParams

resource

<ConventionalPrintingParams Class="Parameter" ID="_400"

PrintingType="SheetFed" Status="Available" WorkStyle="WorkAndTurn" />

<PrintCondition Name=" Paper type_1_ISO_12647-2" Class="Parameter" ID="_4711"

PartIDKeys="Side Separation" Status="Available">

<PrintCondition Side="Front">

<PrintCondition Separation="Cyan"

AimCurve="0.0 0.0 0.4 0.56 1.0 1.0" />

<PrintCondition Separation="Magenta"

AimCurve="0.0 0.0 0.4 0.56 1.0 1.0" />

<PrintCondition Separation="Yellow"

AimCurve="0.0 0.0 0.4 0.56 1.0 1.0" />

<PrintCondition Separation="Black"

AimCurve="0.0 0.0 0.4 0.53 1.0 1.0" />

</PrintCondition>

</PrintCondition>

Figure 10.3

SOLL curves for the

dot gain in print

150 Press

ure 10.3 shows but one example where the target curve for the

dot gain was entered. The values to interpret are the same as

Figure 4.11.

Presetting Ink Zones with Offset Printing

Classically, the ink supply of the ink fountain is adjusted to the print

subject on an offset press (exception: anilox color inking units, also

called short inking). For this purpose, individual color zones are

defined across the width of the print. In each of these zones, an

ink zone key, ink blade, or ink knife presses on the ink fountain so

that only a defined amount of ink can flow. In general, the color-

allotting slot is controlled electronically. The ink zone presetting is

done as part of setting up a form.

As we have already mentioned in Section 4.2, the calculation of

the ink presetting values using prepress data is already in Portable

Print Format (PPF), the most widespread application. In fact, it is

so common that in many cases PPF continues to be used and not

JDF. Therefore, we must admit that the functionality of JDF is not

superior. In this respect, switching from one file format to another

has, at minimum, no advantages to the user. Overall, however, a

JDF implementation has a structural advantage because these val-

ues can then be packaged and forwarded with all of the other val-

ues in a JDF file and no special handling is required. More impor-

tant, it eliminates the need to license a PostScript interpreter in

order to interpret the PPF file.

The calculation of the ink zone settings is seen as a JDF model

in Figure 10.4. The

Preview resource al-

lows access to a pre-

view image (usually

only around 50 ppi)

of the entire sheet.

Because, simply put,

the ink zone pre-

setting must only

count the pixels

per separation and

zone in the preview.

In InkZoneCalcula-

tionParams the indi-

vidual zones are de-

fined, which have

InkZone-
Calculation

InkZone-
Profile

Transfer-
Curve-
Pool

Layout

InkZone-
Calculation-

Params

Preview

Conventional-
Printing

Figure 10.4

Calculation of the ink zone

presets in offset

151Chapter 10

different widths on various press types. In Example 10.5 the zone

width is 3.25 cm (92.125984 / 7222.54 cm) and there are a to-

tal of 23 zones parallel to the cylinder axis. It is formally correct

that there is only one zone in the direction of the paper run and its

height is equal to the maximum printing format in the unwinding

direction, although the entry itself seldom appears. The zone po-

sitions are specific to the printing press; the preview image shows

only the sheet, however. In order to be able to calculate the ink

zone settings, the positions of the sheet with respect to the zones

must be provided. This happens most simply by defining the posi-

tion of the sheet on the plate during printing. You can find this en-

try in the attribute SurfaceContentsBox as a Layout resource, which

has already been covered several times in this book. And finally,

there are also possible transfer curves required in order to be able

to carry out the tonal value changes with RIPing of the exposure

data and also with the preview image (see Section 4.2).

In JDF the ink zone preset values are stored in the InkZone-

Profile resource. Of course, the settings are not given in microme-

ters as ink-allotting slot openings, because that would be far too

machine-specific. Instead, each of the preset values is a number

between 0 and 1, where these represent the average surface cov-

erage in a zone. One must multiply this factor by 100 in order to

arrive at a percent value. From this, the calculation of the open-

ing of the ink-feeding slot occurs with the help of an adaptation

curve, which is determined at the press for the specific print con-

ditions (ink, paper) and is no longer part of the JDF description.

For an unchanged printed image, because of the same ink pre-

set values, the ink supply must be higher on a natural paper than

an art paper. These differences are identified on the press, stored

in a file, and reused for the respective print order. Thus, the color

work, without having printed even a single sheet yet, is adjusted to

a substrate. Thus, so the control components always use the cor-

rect data for the corresponding printing conditions, they should al-

ways grab this information out of the JDF order description. In the

event they have incorrect values (because they were not adjusted

for a specific order) or if there are none at all, this leads to several

rule cycles (copy making, sheet pulling, measuring and evaluating,

readjusting, making new copies, etc.) having to be being carried

out, which, in turn, requires more time and more makeready sheets.

<InkZoneCalculationParams Class="Parameter" ID="_25" Status="Available"

ZoneHeight="1451.338583" ZoneWidth="92.125984" Zones="23" ZonesY="1" />

Figure 10.5

Ink zone parameters

152 Press

In Figure 10.6 example code for an InkZoneProfile can be seen. The

resource is partitioned up to the separation because the ink zone

preset values are generally different for each color. In the exam-

ple only the values for the color black are given. The 23 values in

the attribute ZoneSettingX give the coverage values for each zone;

thus they begin on the left and are limited to two digits after the

decimal point: 0.49%, 0.86%, 4.09%, 5.25%, etc. The ZoneSet-

tingY contains the average value of the coverage area for all zones,

in this case 4.12%.

Control Marks

Typically several control elements are burned on press forms. They

can be categorized according to function:

• Control elements for the production of press forms

• Control and monitoring elements for printing

• Control and monitoring elements for postpress

Figure 10.6

Ink zone preset values

<InkZoneProfile Class="Parameter" ID="_3" PartIDKeys="SignatureName SheetName

 Side Separation"...>

<InkZoneProfile SignatureName="S1">

<InkZoneProfile SheetName="Cover">

<InkZoneProfile Side="Front">

<InkZoneProfile Separation="Black" Status="Available"

ZoneWidth="92.125984" ZoneSettingsX="0.004947916666669755

 0.008625565610862806 0.040955175339369494

 0.05258389894419598 0.036772011689294073

 0.04679616798642827 0.03305889423077225

 0.04669306184012362 0.023023897058826546

 0.03196920955882654 0.026367305335598803

 0.022763303638766233 0.01726845305430168

 0.027979296285825045 0.03681620003771036

 0.0802906414969863 0.07557833710407524

 0.07194204845399976 0.05891538225867557

 0.08456872171945984 0.08174302413273286

 0.029526241987182487 0.009106099170440482"

ZoneHeight="1451.338583"

ZoneSettingsY="0.04123003711309234" />

<InkZoneProfile ... />

 ...

</InkZoneProfile>

</InkZoneProfile>

</InkZoneProfile>

</InkZoneProfile>

153Chapter 10

In this chapter, only the control elements for print are relevant. The

most important are:

• Registration or register marks

• Print control strips

• Pages or equipment marks, also known as push or pull marks

• Press sheet signatures

Naturally, marks should be placed in certain areas. In sheet print-

ing the side marks are placed exactly on the sheet edge, the print

control strip is placed parallel to the cylinder either in the mid-

dle or also on the end of the sheet, and so forth. However, un-

less the marks are also printed in order to be visually checked

later by an employee or measured with a handheld device, the

exact position for the verification process is unimportant. Only

when automatic inline or automatically controlled offline mea-

suring systems are used is the knowledge about the exact place-

ment of the control elements important, so that the sensors can

actually adjust themselves to them. And there are more and

more such measuring systems: there are inline measuring sys-

tems for the color application, as measured in density, for off-

set, flexo, and gravure printing. At a minimum there are also

spectrophotometric-based inline control systems. Often printed

register marks are also read by inline CCD cameras and analyzed

with the purpose of controlling the circumferential, lateral, and di-

agonal register.

A prepress worker sets the position of the control elements on the

imposition layout in the assembly program. With “dynamic” marks

as we have seen in Section 9.2, the exact placement is calculated

only by software. The positions of the marks therefore represent

a typical example by which information has to be passed across

departments. This task can be taken on by JDF, and in Figure 10.7

shows several resources of the MarkObject type which are embed-

ded in a Layout resource.

Press Forms and Substrates

There are two states of press forms (plates, gravure cylinders,

sleeves, or screens): blank press forms and finished press forms

which hold the press image information. In offset you speak in

shorthand about exposed and unexposed plates where the term

“imaged” would be correct since not all plates are sensitive in the

154 Press

visible spectrum. The possibility of plate development here is sim-

ply added to the exposure process. Unexposed plates are described

in the JDF resource Media, where the attribute MediaType must

be the same as the Plate. Substrates are defined with the same re-

source. The type of substrate must then be specified under Media-

Type, such as Paper, Foil, or CorrugatedBoard.

For the printing process, however, exposed plates are required

(once you have disregarded uncoated dummy plates in newspaper

printing). These are listed in the ExposedMedia resource. In prac-

tice, print shops use only one plate type, and the size of the plate

is statically defined for each printing press. The printer is actually

interested in whether the exposed plates are available for an order.

There is also automation which relays the order to the press auto-

matically when all of the sheet’s plates or forms are available. This

exact information can be seen in Figure 10.8. You will also recog-

nizes that there is a reference to the Media resource in which the

plate type and the plate size are specified.

<Layout Class="Parameter" DescriptiveName="Lay" ID="_111" Name="Lay"

PartIDKeys="SignatureName SheetName Side" Status="Available">

<Layout Name="SIG1" SignatureName="SIG1">

<Layout DescriptiveName="Sheet" Name="Sheet" SheetName="Sheet"

SourceWorkStyle="WorkAndTumble" Status="Available"

SurfaceContentsBox="0 0 2111.81102362 1714.96062992">

<Media Class="Consumable" Dimension="2111.81102362 1714.96062992"

 ID="_3062" MediaType="Plate" Status="Available" />

<Layout DescriptiveName="Recto" Side="Front"

Status="Available"

SurfaceContentsBox="0 0 2111.81102362 1714.96062992">

...

<MarkObject CTM="1 0 0 1 0 0"

ClipBox="0 0 2111.81102362 1714.96062992" Ord="0">

<RegisterMark Center="2028.42519684 659.11417322"

Class="Parameter" MarkType="8AR_R_106x164" Rotation="0" />

<RegisterMark Center="83.38582677 659.11417322"

Class="Parameter" MarkType="8AR_L_106x164" Rotation="0" />

<ColorControlStrip Center="1059.44881889 809.11811023"

Class="Parameter" Rotation="0" Size="1798 28"

StripType="FOGRA_5_F74_740x10" />

</MarkObject>

</Layout>

</Layout>

</Layout>

Figure 10.7

Marks object in a Layout

resource

155Chapter 10

We find in the JDF code in Figure 10.9 a bit about the substrate

for the cover in the partitioned resource Media.

• Sheet size is 61243 cm (Dimension)

• Paper Class 1 according to ISO 12647-2:2004 (Grade)

• Travel direction parallel to the long edge of the paper

(GrainDirection)

• Paper thickness of 215 micrometers (Thickness)

• Paper Weight of 215 g/m2 (Weight)

• Glossy front side coating (FrontCoatings)

• Matte back side coating (BackCoatings)

• Cromolux brand (Brand)

Figure 10.8

Plate information for the

printing process

<ExposedMedia Class="Handling" ID="_123" PartIDKeys="SignatureName SheetName

 Side Separation"...>

<ExposedMedia SignatureName="Signatur_1">

<ExposedMedia SheetName="Cover" Status="Available">

<ExposedMedia Side="Front" Status="Available">

<ExposedMedia Separation="Cyan" Status="Available" />

<ExposedMedia Separation="Magenta" Status="Available" />

<ExposedMedia Separation="Yellow" Status="Available" />

<ExposedMedia Separation="Black" Status="Available" />

</ExposedMedia>

<ExposedMedia Side="Back" Status="Available">

<ExposedMedia Separation="Cyan" Status="Available" />

 ...

</ExposedMedia>

<MediaRef rRef="_1234">

<Part SheetName="Cover" SignatureName="Signatur_1" />

</MediaRef>

</ExposedMedia>

</ExposedMedia>

<Media Brand="745x605_Azura" Class="Consumable" Dimension="2111.811

 1714.961" ID="_1234" MediaType="Plate" PartIDKeys="SignatureName SheetName"

Status="Available">

<Media Class="Consumable" Dimension="2111.81102362 1714.96062992"

SignatureName="Signatur_1" Status="Available">

<Media Brand="745x605_Azura" Class="Consumable"

Dimension="2111.811 1714.961" MediaType="Plate" SheetName="Cover"

Status="Available" />

</Media>

</Media>

156 Press

However, additional attributes could be added to this resource like

the Lab value of the paper or the degree of opacity. Unfortunately,

these values are never (or rarely) provided by the paper supplier

(for example, in the paper price list).

Colors and Color Control

Different specifications can be created under the term “color”:

the determination of the color per sheet side, the color sequence

of the press, the colorimetric properties of the printing inks, the

color names in the content data, the color model of the output

device, and so on. This information will be stored in different re-

sources in the JDF.

The printing inks are listed in the Ink resource. In the simplest case,

these are only the process colors as seen in Figure 8.15. There is

the front side CMYK, and the back side is only one color, black.

Of course, special inks or varnishes can also be specified. However,

the separation’s names should correspond to the ink names in the

ColorPool resource. It lists all of the colors which apply to the or-

der, even those, under the circumstances, that are not printed on

the printing press. Here the colors are more precisely specified, for

example concerning the ColorType, whether opaque, transparent,

or translucent (Normal) colors or also the neutral density of the col-

ors (NeutralDensity). We have already seen in the prepress chap-

ter (Chapter 9) that such color properties are important for the

Trapping process. Also Lab-values of the colors or the CMYK rep-

resentation of the colors—as well as special colors—may be en-

tered here. Figure 10.10 provides a simple example of a ColorPool

resource. The CMYK value of a color corresponds to the (approx-

imate) tonal value of CMYK as a percent, but normalized to 1 in-

stead of 100 as usual. With one exception, the ColorType in the

example is always Normal, thus translucent. The exception color is

only being used to outline the proof sheet. In particular this color

is not allowed to be trapped with the other colors, no correspond-

Figure 10.9

Substrate information

<Media Class="Consumable" ID="_111" MediaType="Paper"

PartIDKeys="SignatureName SheetName" Status="Available"...>

<Media Class="Consumable" SignatureName="Signature_1" Status="Available">

<Media SheetName="Cover" Class="Consumable" ProductID="_999"

Status="Available" Dimension="1729.1338582677165 1218.8976377952756"

Grade="1" GrainDirection="LongEdge" Thickness="215.0" Weight="215.0"

FrontCoatings="Glossy" BackCoatings="Matte" Brand="Chromolux" />

</Media>

</Media>

157Chapter 10

ing plate may be exposed, and of course it is not allowed to be

printed on the printing press.

As a last resource that has to do with color definitions, we will once

again list the ColorantControl resource (as already done in 6.4 with

Figure 6.18, 8.2 with Figure 8.12, and 9.1 with Figures 9.8 and

9.13). These contain all of the information they need in order to

map the colors of the content data to the colors of the output de-

vice. This information is completely irrelevant for a printing press,

of course. Nevertheless this resource is necessary in the printing

process because a subelement, namely DeviceColorantOrder, spec-

ifies the color sequence in the printing press, typically black, cyan,

magenta, and then yellow in sheetfed offset (Figure 10.11).

Proof and Preview

As a rule, the printer receives a proof, usually a form proof, which

was output from a non-true-color inkjet printer. Additionally, in a

networked configuration, as soon as a job is selected it is also dis-

played at the control panel as a small preview image of the sheet.

In some cases (as with the printer Y in Section 2.2) Color-accu-

Figure 10.10

ColorPool resource

<ColorPool Class="Parameter" ID="_500" Status="Available">

<Color CMYK="1.0 0.0 0.0 0.0" ColorType="Normal" Name="Cyan"

NeutralDensity="0.61" />

<Color CMYK="0.0 0.0 0.0 1.0" ColorType="Normal" Name="Black"

NeutralDensity="1.7" />

<Color CMYK="0.0 1.0 0.0 0.0" ColorType="Normal" Name="Magenta"

NeutralDensity="0.76" />

<Color CMYK="0.0 0.0 1.0 0.0" ColorType="Normal" Name="Yellow"

NeutralDensity="0.16" />

<Color CMYK="1.0 0.0 1.0 0.0" ColorType="DieLine" Name="ProofColor" />

<Color CMYK="0.2 0.3 0.4 0.5" ColorType="Normal" Name="PANTONEDeepBlue

Lab="20. 30. 40.">

</ColorPool>

<ColorantControl Class="Parameter" ID="_2201" PartIDKeys="SignatureName

SheetName Side" ProcessColorModel="DeviceCMYK" Status="Available">

<ColorPoolRef rRef="_500" />

<DeviceColorantOrder>

<SeparationSpec Name="Black" />

<SeparationSpec Name="Cyan" />

<SeparationSpec Name="Magenta" />

<SeparationSpec Name="Yellow" />

<SeparationSpec Name="PANTONEDeepBlue" />

</DeviceColorantOrder>

 ...

</ColorantControl>

Figure 10.11

ColorantControl resource

158 Press

rate soft proofs are passed to the control station, which must be

equipped with appropriately normalized light and calibrated mon-

itors. Also color-accurate page proofs, color-accurate sheet proofs,

and previously printed prototypes are used for an approval process.

Both proofs and preview images can naturally be described using

resources in JDF. A hardcopy proof is usually represented through

a Component, and a preview image or a soft proof is represented

through a RunList as already stated in Section 9.5. In some cases

(especially in the packaging sector) hardcopy proofs are produced

using a platesetter or special proof devices which can process the

rasterized bitmap data (raster proofs). In such cases the proofs are

represented through special variations of the ExposedMedia re-

source.

Component

The output of the printing process is press sheets, an intermedi-

ate product of the overall process. Which means, translated in the

JDF language, that the output of the ConventionalPrinting pro-

cess is a Component with the ComponentType equal to Sheet. Yet

these components are not only partitioned up to press sheet, but

also divided even after the Condition, as seen in Figure 10.12. In

the reference to the Component, i.e. in ComponentLink, these

distinctions are first clear: The press sheets are divided into Waste

sheets and Good sheets. And for each of the two, a desired num-

ber of sheets are indicated. With 2040 Good sheets, 364 Waste

sheets are planned.

Figure 10.12

Components of the print

sheet

<Component Class="Quantity" ComponentType="Sheet" ID="_123"

PartIDKeys="SignatureName SheetName Condition" Status="Unavailable">

<Component SignatureName="Signature_1">

<Component SheetName="Cover" />

</Component>

</Component>

<ComponentLink Amount="1" Usage="Output" rRef="_012">

<AmountPool>

<PartAmount Amount="2040.0">

<Part Condition="Good" SheetName=" Cover "

SignatureName=" Signature_1" />

</PartAmount>

<PartAmount Amount="364.0">

<Part Condition="Waste" SheetName=" Cover "

SignatureName=" Signature_1" />

</PartAmount>

</AmountPool>

<Part SheetName=" Cover " SignatureName=" Signature_1" />

</ComponentLink>

159Chapter 10

It is generally true that in a sense an AmountPool represents a

count of resources, which can either be used or generated by a pro-

cess. Strictly speaking, however, an AmountPool is only a type of

“notepad” onto which the resource’s counter can write its values.

One finds JDF implementations in offset print shops, and mostly

within sheetfed print shops. In web offset, gravure, flexo, or screen

printing there is a low penetration rate that is limited to MIS and

prepress (see Chapter 12). A JDF integration of gravure, flexo, or

screen printing machines is currently unknown to us. Indeed, the

ConventionalPrinting process includes these printing processes, but,

to date, the corresponding press manufacturers seem to have very

little interest in the subject. Many of them are not even members

of the CIP4 Organization. There could be several reasons for this:

• The original initiators of JDF are manufacturers of offset

machines and the demands of the other print technologies

were fewer and only considered later.

• In gravure and flexographic print, the prepress and printing

companies are often separate firms, making it difficult to

integrate.

• The transfer of the ink zone preset values has a particularly

high cost/efficiency, which is not there for the other print

technologies.

• There are essential printing standards only for offset, while

other technologies mostly print to house standards or even

standards specific to certain customers.

• The variability of substrates is higher than with offset, which

complicates automation.

• With the print volumes in offset, which are mostly lower than

gravure or flexo printing, longer makeready times come into

play.

• Especially with gravure sector, there are only very few large

printing firms which have individual order control systems.

Nevertheless, it is conceivable that this situation could change in

the near future. Because, at the very least, the JMF messaging

about material consumption, the current status of the printing

presses, and print orders are naturally of interest for orderly pro-

duction in each case.

160 Press

10.2 Digital Print

Digital print is well known for its strengths, especially short runs,

short production times, and personalized printing. Thus, a possible

end-to-end automation is an important prerequisite for the cost-

effectiveness of this print technology and JDF is, therefore, a po-

tentially relevant data format.

One can divide digital print into two applications areas, although

their borders are not clear but rather fluid:

• Office and copy shop printing

• Professional printing with a digital print system

In particular, digital printing systems differentiate themselves from

copy-shop printing through more imposition options, higher color

fidelity (color management), and expanded inline finishing options.

These categories again mirror each other in the corresponding two

ICS papers, titled the Office Digital Printing ICS and the Integrated

Digital Printing (IDF) ICS. JDF-networked, integrated digital print

systems are often part of a “hybrid workflow” in which the data

for both offset and digital print is prepared in a WMS. Not only can

offset plate production be automated, but the cylinder engraving

in gravure printing can also be more strongly JDF-supported. Even

in this area there are implementations where JDF data, exported

by the MIS, are taken from the gravure system and from produc-

tion reports and returned to the MIS.

No. Integrated Print System Digital Printer in Office/Copy-Shop

1 LayoutPreparation LayoutPreparation

2 Imposition? Imposition

3 ColorSpaceConversion?

4 Interpreting Interpreting

5 ColorSpaceConversion?

6 Rendering Rendering

7 ColorSpaceConversion?

8 Screening?

9 Imposition?

10 DigitalPrinting Digitalprinting?

11 Folding?, Stitching?, Trimming?, HoleMak-

ing?, CoverApplication?, SpineTaping?

Folding?

12 Stitching?

Table 10.13

161Chapter 10

Compared to sheetfed offset,

digital print differentiates itself

especially in technical process

points:

• In digital print, no physical

printing form is produced;

the JDF process ImageSetting

is unnecessary.

• A digital printing press

often has integrated inline

finishing components.

The second point leads to digi-

tal printing being represented in

JDF via a combined process, for

which the intermediate results

of the individual processes need

not be described. The possible

processes are presented in order

from the two ICS papers in Ta-

ble 10.13. That both processes

Imposition and ColorSpaceCon-

version are listed several times

and marked with a question

mark as optional in the “Inte-

grated Print System” is imme-

diately conspicuous. This means

that both processes can exist at

different positions in the work-

flow sequence, but also that

they must always exist at exactly

one position. The finishing pro-

cesses are all optional and may

be carried out in more or less ar-

bitrary sequences. The “office

digital printer” is expected to

have no dedicated color man-

agement control and fewer options in finishing processes.

Due to the variety of the processes involved, such a combined pro-

cess can have many input resources. As the output of the com-

bined processes, one always receives a Component resource. Also

intermediate outputs of the processes are resources of the type

Component or RunList, if they are even ever listed. In Figure 10.14

Figure 10.14

Practical example of digital

print

Stitching

DigitalPrinting

Interpreting

LayoutPreparation

Imposition

Interpreting
Params

Device

Layout-
Preparation-

Params
Media

Digital-
Printing-
Params

Stitching-
Params

RunList

Rendering
Rendering-

Params

Device

Media

RunList

Folding

Component

Folding-
Params

162 Press

a very simple example is provided, which, indeed, does not give

all of the options, but comes from practical experience. The corre-

sponding code is listed in Figure 10.15.

The LayoutPreparation process is similar to the Stripping process

which was handled in Section 9.2. Namely, both produce a Layout

as an output resource, i.e., an imposition layout, which is necessary

for imposition. Both also have input resources, through which they

are supplied with the information they need for layout generation.

For the Stripping process, the input resource is called Stripping-

Params; for the LayoutGeneration process it is referred to as Lay-

outGenerationParams. The difference between the two processes

lies in the application, because LayoutPreparation is used in digital

printing, while Stripping is used in offset prepress in concert with

an MIS. There is the possibility here that there will be changes in

the next JDF version, because the description of the LayoutPrepa-

rationParams resources is already stated in version 1.4, which could

be abandoned again in future versions.

<?xml version="1.0" encoding="UTF-8"?>

<JDF Status="Ready" Type="Combined" Types="LayoutPreparation Imposition

 Interpreting Rendering DigitalPrinting Stitching Folding" Version="1.3" …>

 …

<ResourceLinkPool>

<ComponentLink Amount="65" CombinedProcessIndex="5" Usage="Output"

rRef="_2503">

<Part SignatureName="Sig1" />

<Part SignatureName="Sig2" />

<Part SignatureName="Sig3" />

</ComponentLink>

<LayoutPreparationParamsLink CombinedProcessIndex="0" Usage="Input"

rRef="_2504" />

<MediaLink CombinedProcessIndex="0 4" Usage="Input" rRef="_0918" />

<DigitalPrintingParamsLink CombinedProcessIndex="4" Usage="Input"

rRef="_2507" />

<DeviceLink CombinedProcessIndex="2 4" Usage="Input" rRef="_2509" />

<RenderingParamsLink CombinedProcessIndex="3" Usage="Input"

rRef="_2511" />

<InterpretingParamsLink CombinedProcessIndex="2" Usage="Input"

rRef="_2510" />

<StitchingParamsLink CombinedProcessIndex="5" Usage="Input"

rRef="_2513" />

<StitchingParamsLink CombinedProcessIndex="6" Usage="Input"

rRef="_2514" />

<RunListLink CombinedProcessIndex="0 1" ProcessUsage="Document"

Usage="Input" rRef="_9437" />

</ResourceLinkPool>

</JDF>

Figure 10.15

Practical example of digital

print

163Chapter 10

Personalization

Personalized printing, also called variable-data printing (VDP),

means that individual elements (text, graphics, images) can be

different for each side/piece for each press sheet. Usually there is a

static piece with VDP which is identical on each sheet and a variable

part which is controlled by a database or a control file. One such

order usually consists of the following sub-tasks (Figure 10.16):

• Preparation of a data system (databases or tables) with

information about the addressee

• Design of a template for each side/piece where the static and

variable elements are positioned, commonly accomplished

with plug-ins from layout programs

• Definition of the rules for linking the variable part of the

template with the data system

• Merging all of the information for output to the RIP of a digital

print system

For the output of the personalized data to a RIP one could use a

normal PDF. Then each side of each sheet would have to be indi-

vidually RIPed, even the static elements. The variable portion is also

typically only a selection from a collection of a few static elements.

As a result, this approach would be very ineffective. Instead, a bet-

ter special language and corresponding RIPs are used in order to

make it possible to transmit and RIP graphic elements only once

but to use them repeatedly and variably.

First and foremost is the XML-based Personalized Print Markup

Language (PPML) [11] [36] [37] [38] with the subspecifications

Figure 10.16

Subtasks for personalized

print

Output data
for Imposition/RIP

generation

BirthdayFirstnameLastname Gender StreetResidence Postal Code

19.03.1963CarlCool m Am Kaltenbach 3Eisleben 6295

11.11.1961FriederikeFrisch w Eisigweg 42Kaltenbronn 76593

Database

Layout Element

Rules

Template

If Gender=m use chainsaw.jpg
else handbag.tif for Picture1

Hello
«Firstname» «Lastname»,

bla bla bla bla bla bla bla bla
bla bla bla bla bla bla bla bla
bla bla bla bla bla bla bla bla
bla bla bla bla
bla bla bla bla
bla bla bla bla
bla bla bla bla
bla bla bla bla
bla bla bla bla bla bla bla bla
bla bla bla bla bla bla bla bla
bla bla bla bla bla bla bla bla
bla bla bla bla bla bla bla bla
bla bla bla bla bla bla bla bla
bla bla bla bla bla bla bla bla
bla bla bla bla

chainsaw.jpg handbag.tiff

164 Press

PPML/GA (Graphic Art); this is in addition to the many vendor-

specific formats which will not be discussed here. The data format

PPML/VDX (Variable Data Exchange) which is based on PPML

and PDF and the relatively newly specified format from Adobe,

PDF/VT (Variable Transactional), are other options. Some spe-

cialists in the industry foresee that the PDF/VT-Format [25] will re-

place PPML in the future, especially since it is integrated into Print

Engine2 (the OEM RIP technology from Adobe Systems [1]).

PPML was presented in exactly the same way as JDF was in 2000.

This vendor-independent language was developed by the PODi

(Digital Printing Initiative) organization, founded in 1996. Is PPML

now a competing format to JDF in digital printing, or does it sup-

plement it? To answer this we will first examine the most impor-

tant properties of PPML.

PPML allows digital objects like images, text, and pages which ex-

ist in different data formats (EPS, PDF, JPEG, TIFF, etc.) to integrate

into one PPML file, whereby these objects are not necessarily em-

bedded into the PPML file but instead can be referenced. In PPML,

these objects can then be positioned, transformed, and trimmed.

In PPML one can also define objects to be reusable so they can be

RIPed only once and subsequently stored in a cache for later uses.

Graphic objects are also not stored in PPML, but in the usual for-

mats. Instead, PPML describes only how these objects must be

combined in order to make individual pages.

It is sometimes argued that PPML simply describes only the VDP

pages, like PDF, but more robustly structured, and the JDF work-

flow begins with the completed pages, hence PPML and JDF are

only supplementary formats. But this is not completely right for

several reasons:

• JDF also describes page creation, represented by the

LayoutElementProduction process.

• PPML also includes optional workflow metadata, such as the

description of the imposition layout [37].

Consequently, although both formats overlap each other in some

things, they, in turn, complement each other in many other things.

For example the properties of the substrate in PPML may not be

precisely specified; in JDF they can be very well defined (in the

Media resource). Indeed, a PPML file could even contain JDF data

or a reference to a JDF file, but this was withdrawn with version

2.2 since PPML in the future shall only serve as content descrip-

tion. Conversely, a RunList resource can reference PPML data. This

165Chapter 10

resource is then input for a PPML consumer. In [39] the conven-

tions between the two formats are covered in detail. For example,

the attribute IgnorePDLImposition is given in the JDF resource Lay-

outElement if the sheet layout information should be taken out of

the PPML data or out of the JDF data.

Figure 10.17 again gives the JDF model for VDP. The RunList re-

source on the right side represents a PPML or another VDP lan-

guage. On its part, it is typically input from an Imposition process.

On the left side we have the process DBDocTemplateLayout, which

creates a template for the static and variable elements whereby

the link to the database is already defined. For this task, rules are

needed as to which text or graphic element should be incorpo-

rated into the template. Since the implementation of the rules is

very disparately handled from applications, they are only inserted

into the DBRules as readable comments. In the DBSchema resource,

the database type is given (SQL, XML, or comma-separated text en-

tries) as well as a readable comment about scheme. In LayoutEle-

ment the individual content elements which are required for the

template and as variable elements are described and their URL is

given. The DBDocTemplateLayout process generates a new Lay-

outElement resource, which represents the template. In order to

really identify as a template, the value True must be entered in the

Template attribute.

Finally the DBTemplateMerge process has the task of generating

a VDP language like PPML out of the template, such as informa-

tion like where in the file system the file(s) are stored, and what is

to be found in the DBMergeParams. The URL of the database, the

indices of the database records, and the database access in the

database-specific language (like SQL) is held in the DBSelection

resource.

DBDocTemplate-
Layout

DBTemplateMerge RunList
Layout-
Element

DBSchema

DBRules

Layout-
Element

DBSelection

DBMerge-
Params

Figure 10.17

JDF model for personalized

print

166 Press

167Chapter 11

11 Postpress

There were few networked postpress finishing machines before

JDF was published. For example, high-speed cutters received their

data over PPF, as described in Chapter 4.2. Or proprietary solutions

were developed with which the most important data for the fold-

ing (sheet size and fold location) of a job was coded in an EAN code,

printed in a job jacket, and later read on the folding machine with

the help of a barcode reader. There was, and still is, another solu-

tion: for example, when a job starts a cutting program, a folding

plan is defined for the cutter or folder, respectively. However, in

order not to tie up these (expensive) special machines with setup

work, work preparation computers are set up to be able to trans-

fer the programs over the network to the finishing equipment. This

leads to the reduction of setup times for the special machines. In

addition, these computers collect order- and machine-related data

from the production equipment (especially the folder and saddle

stitcher) such as setup times, machine status, production rate, and

so on. The machine manufacturers have developed proprietary so-

lutions for this and the protocols between the job scheduling soft-

ware and the equipment are manufacturer-specific (as between

the control centers of the printing machines and the printing ma-

chines themselves). But such networked configurations are not

widespread, and connecting via JDF is still very scant in finishing.

There are two areas offered by the industry for potential JDF/JMF

interfaces:

• The console terminal of the finishing machine, and

• The work preparation stations for one or more finishing

machines

To revert to CIP4 terminology, in one the JDF device communicates

directly over the local network to the production machine or ma-

chines, and in the other the JDF device communicates to a dedi-

cated machine or machines directly over the local network. In both

cases the imported JDF values are then able to be used for the de-

fault setting, which the user is still able to modify in the software.

In the second case the finished production programs can then be

passed over the network to the machines in the proprietary for-

mat. Conversely, the production data must be translated into JMF

messages and JDF structures from the proprietary protocol. Figure

11.1 shows both configurations as a flowchart. The difference be-

tween both solutions is contained in the diagrams, where a sep-

arate job preparation station can sort orders in sequence and dis-

168 JDF in Postpress

tribute them to different machines if necessary. The operator of

the machine(s) is then relieved of that burden. With a JDF/JMF in-

terface integrated into a machine, either the MIS or the user spec-

ifies the production sequence to the machine and makes sure that

the changeover times are as minimized as much as possible. In this

case, several JDF/JMF interfaces must also be maintained if they re-

side with the production machines, and software updates can be

difficult. On the other hand, the solution really only makes sense

with a work preparation solution if several production machines

from one manufacturer can be controlled with it.

Postpress
machine

Postpress
machine

Postpress
machine

JDF/JMF
interface

Postpress
machine

JDF/JMF
interface

Work
preparation

JDF/JMF
interface

MIS, Workflow
Server, and/or

assembly software

MIS, Workflow
Server, and/or

assembly software

mfr.
specific

mfr.
specific

Figure 11.1

Two different configuration

principles of JDF/JMF

interfaces in postpress

Examples of JDF-compatible Postpress Connectivity (2009)

Manufacturer: Main Product:

Ferag AG iQ

Heidelberger Druckmaschinen Prinect Postpress Manager

Hohner Maschinenbau GmbH ixFrame (der ixact GmbH)

Horizon International Inc. i2i

MBO Datamanager

Müller Martini Connex

169Chapter 11

JDF devices in finishing receive JDF/JMF information either from MIS,

from a workflow server in production, or directly from an assembly

program. The latter are those which actually specify the positions

of the cut and fold marks in as much as the information is able

to be relayed. Indeed a configuration is also possible in which the

assembly program returns the information to the MIS or a work-

flow server that will in turn serve finishing. Another possibility is

that an assembly program completely controlled by the MIS cre-

ates the imposition layout and has no facilities for altering posi-

tion on a page. The MIS can then directly determine the cut and

fold positions for finishing.

11.1 Guillotine Cutter

Raw sheets, which are also intermediate products (as, for exam-

ple, are press sheets), are usually cut with a high-speed cutter, also

called a guillotine cutter. The cutting of raw sheets before printing

not only serves the purpose of obtaining the correct sheet size but

also to obtain squared sheets. Conversely, press sheets are cut in

order to get multiple signatures from a press sheet or also in order

to reduce the size of a signature since the edges are not allowed

to be too large at the three-knife cutter after folding.

In the JDF notation, raw sheets are a resource of the type

Media; intermediate or end products are of the type Compo-

nent. The cutting process (Cutting) therefore receives either

Media or Component resources as input and also generates the

same resource type as output. The model can be seen in Figure

11.2. The question marks, which are at the input resources and in-

dicate optionality, are interpreted here to mean that exactly one

of the two options is mandatory. The output resources are marked

with an asterisk, which stands for zero or multiple numbers of re-

sources. We must also point out that exactly one resource may be

listed here which is identical to the input resource, and this must

occur at least one time.

The most important information for the cutting process is in the

CuttingParams. Similar to PPF, cut blocks (CutBlock) may be de-

fined with JDF (see Section 4.2 and Figure 4.12 in particular).

Where cuts must be is the only thing specified, but the cutting

sequence is not defined. Alternatively, they can be defined in the

CuttingParams resources. Each cut specification is an element of

the type Cut. In older JDF versions one could also have defined

the positions of the cut marks in the CuttingParams resources, but

since Version 1.3 this information has been stored in the Layout

170 JDF in Postpress

resource, similar to what we saw in Figure 10.7 for the print con-

trol element.

Figure 11.3 shows the JDF code of a CuttingParams resource,

which contains six cut blocks, specifically one for each cover block.

For clarity we have removed a few attributes and limited all of

the values to two places after the decimal point—in reality you

would enter the values with more precision. The block size of

768.182396.84 DTP points corresponds to 2712140 mm. The

block size is cut initially and is comprised of the recto, verso, and

spine of the booklet and a one-centimeter bleed around the final

format. The position of each block is determined with the BlockTrf

attribute. The definition of the matrix, which holds the values of

the attributes, is implemented as outlined in Figure 9.21. One con-
Figure 11.3

Definition of cutting blocks

<CuttingParams Class="Parameter" ID="_77" SheetName="Cover"

Status="Available">

<CutBlock BlockName="Cover_1" BlockSize="768.18 396.84"

BlockTrf="1.0 0.0 0.0 1.0 96.37 14.17"/>

<CutBlock BlockName="Cover_2" BlockSize="768.18 396.84"

BlockTrf="1.0 0.0 0.0 1.0 864.56 14.17" />

<CutBlock BlockName="Cover_3" BlockSize="768.18 396.84"

BlockTrf="1.0 0.0 0.0 1.0 96.37 411.02" />

<CutBlock BlockName="Cover_4" BlockSize="768.18 396.84"

BlockTrf="1.0 0.0 0.0 1.0 864.56 411.02" />

<CutBlock BlockName="Cover_5" BlockSize="768.18 396.84"

BlockTrf="1.0 0.0 0.0 1.0 96.37 807.87" />

<CutBlock BlockName="Cover_6" BlockSize="768.18 396.84"

BlockTrf="1.0 0.0 0.0 1.0 864.56 807.87" />

</CuttingParams>

Cutting

Cutting
Params

Component*

Component?

Media*

Media?

Cutting

Cutting
Params

Figure 11.2

JDF model of the cutting

process for raw sheets (top)

or intermendiate or end

products (bottom)

171Chapter 11

verts the DTP points into centimeters in the configuration

from Figure 11.4. A three-knife trimmer cuts the book-

let into the final format at the end. However, this opera-

tion is not described by a Cutting process, instead through

the Trimming process. Accordingly, there are no Cutting-

Params; instead there are TrimmingParams. These would

be entered as 1202120 mm final format in our example.

11.2 Folder

With modern folding machines, many things that were able to be

set only manually may now be entered into a dialog box and then

controlled automatically. The side fence for the sheet feeder, the

roller settings based on paper thickness, or the stop in the plate

folder would be examples here. In contrast, other parameters are

not automatically controlled, such as the air supply to the sheet

separator. But it would be possible here that defaults for certain

types of paper or even specialty papers could be stored and re-

called with the help of the order information or with the JDF, or in

the future a “learning” software could determine, collect, and re-

turn appropriate settings for specific conditions.

Typically in these folding machines with default settings, sheet size

and folding type are entered in the menu navigation whereupon

the electronic setup system takes over the motorized adjustments.

After a test folding the fine adjustments occur, which means it

takes several iterations to proof and correct the deviations from the

fold marks. But since at the beginning only the sheet size and fold

type are available as parameters for processing, printing must not

cause paper distortion and errors in the previous work operations;

instead differences in individual piece lengths based on correspond-

ing positioning or by the imposition applied before or after the fold

(pre- or post-applied folio) are to be corrected. In other words, the

information from the folding catalog number and folding sheet are

not sufficient (see Figure 11.5), and fine adjustment can therefore

be considerably more complex than the default setting.

Likewise, the same readjustment is also necessary if only the fold

pattern and the sheet size are given in the JDF folding resource.

However, some systems give the precise folding position and fold-

ing sequence as JDF, wherein then the individual existing pre- or

post-folio is already calculated. With this, the post adjustment ef-

fort and also the error rate are lower.

Figure 11.6 shows a folding type for a 24-pager with a folding

catalog number F24-8 entered in the FoldingParams resource. In

0,0

y

x

28,5

14,5

0,5

3,4 30,5

27,1

14

Cover 1 Cover 2

Cover 4Cover 3

Cover 5 Cover 6

Figure 11.4

Position of the cutting

block on the press sheet

172 JDF in Postpress

many cases this information is all of the information that is passed

along. But additionally in the previous example the fold position

was specified in the Fold element. Each Fold resource defines a

folding operation wherein the sequence of the fold elements also

defines the folding sequence. If, as in our example, both the fold-

ing catalog number and the individual folding positions are noted

from an agent/controller, the Fold elements are produced from

Figure 11.6

Folding parameters

<FoldingParams ID="FOLD_A-1" Class="Quantity" Status="Available"

FoldCatalog="F24-8" SheetLay="Left">

<Fold From="Front" To="Up" Travel="943.9370079811025"/>

<Fold From="Front" To="Down" Travel="1887.8740161811025"/>

<Fold From="Left" To="Up" Travel="907.0866141732283"/>

<Fold From="Left" To="Down" Travel="1360.6299241732283"/>

</FoldingParams/>

F24-8 3x4

1 2

4

3

Finished fold format

Folding sequence number

Reference point

Long page edge

Short page edge

Serial number of the 24-pager

Running 24 pages as

3 sections lengthwise
4 sections across

Top fold

Bottom fold

Top fold

Bottom fold

One-third of
long page edge

One-half of
short page edge

Fold direction turns 90°

One-third of
long page edge

Bottom fold

Bottom fold

One-quarter of
short page edge

Figure 11.5

F24-8 from the folding

catalog of specification 1.4

173Chapter 11

the JDF device. At a minimum,

the JDF specification requires it.

The From attribute provides the

corner from where it is folded;

the To attribute provides the

fold direction. The edge de-

scriptions are visible in Figure

11.7; also the reference point

is front-left. The travel values

are given, as usual, in DTP points. With the first folding opera-

tion in Figure 11.5, the sheet is folded at x = 33.3 cm (equivalent

to 2.54*943.9370079811025:72) in the y-direction whereby the

front part is laid over the back part. The third folding operation is

at y = 32 cm, where the left part of the sheet comes to lie on the

right part of the sheet.

Folding machines are often put together from different modules

dependent on the order. If a folding type is provided as an input

into the JDF device as a FoldingParams resource, which the cur-

rent configuration cannot fold, the device gives an error message

directly to the folding machine. The customer service representa-

tives or project managers must therefore be aware of the capabil-

ities of the folding machine and the schedulers also must know

the current configuration in order to determine the order sequenc-

ing. If you want to deploy a software-supported solution at this

point, monitoring of the machine configuration with respect to a

query about the capabilities of the JDF device is necessary. This is

not as trivial as it may seem at first glance, because a product has

a combination of properties which are important for the decision

of whether it can be folded on a specific machine or not. So, for

example, a folding machine can work with paper from 250 g/m2,

and also process a 6-fold z-fold, but not the two together. This

subject is dedicated to the JDF specification under the term Device

Capabilities. With it, a device can define which nodes, elements,

attributes and their values, resources, and JMF messages are sup-

ported. So the maximum folding sheet size can, for example, be

transmitted to the MIS or a production controller. The possibili-

ties are still very far-reaching, and it can even describe through-

put parameters of a machine like sheet count per hour or setup

times. JDF-specific details, namely whether the device software

GrayBoxes—combined processes or general process group nodes

can be combined—are also able to be communicated. Figure 7.6

shows the situation in principle.

Signatures

y

RearFront

Right

Figure 11.7

Designation of the edges

on a signature

174 JDF in Postpress

11.3 Saddle Stitcher

A saddle stitcher generally consists of three modules:

• A collecting machine

• A saddle stitcher

• A three-knife trimmer

With collecting, different signatures are inserted into each other

so that an inserted block is created. For this purpose several feed-

ers, mostly built in series, manually or automatically feed differ-

ent signatures with rods or rolls, with attention to the correct se-

quence (which means from inside to outside in the final product).

In production, the signatures are then separated, opened in the

middle, and laid on a saddle. As the sheets are transported from

one feeder to another, the individual signatures are laid over each

other. In the last process, where necessary, the cover is brought to

the block. The number of different signatures which are collected

depends, naturally, on how big the print product is, but also on

the number of available feeders. Therefore, the setup of a saddle

stitcher includes the adjusting of the different feeders based on

the signature format and the substrate.

In a saddle stitcher, also known as a wire stitcher, or just “stitcher”

for short, metal staples are stuck through the spine of the block

and bent over. The number, position, widths, and shapes of the

wire staples may vary from order to order. With a block, each sta-

ple is set from a single head set, which cuts the correct length wire

from a coil; the staple bends, pokes through the gutter, and finally

bends and closes.

The trimmer (three-sided cutter or also three-knife trimmer) is re-

sponsible for cutting the stitched print product into the end for-

mat and, if necessary, at the same time for cutting the fold in or-

der to unbind the pages. For this purpose, all of the pages outside

of the bound edge are cut (head, foot, leading edge, face, recto).

Some trimmers allow also for a middle separation cut so that two-

up production is possible.

As expected, three processes for stitchers are definitive in JDF: Col-

lecting, Stitching, and Trimming. Since all three modules of a saddle

stitcher are usually strongly coupled, it is therefore advantageous

to describe these three processes through a combined process or

a process group. In Figure 11.8 a corresponding GrayBox is de-

175Chapter 11

picted with its input and output

resources. The resources are de-

scribed briefly below:

• The Device resource contains

the device identifier and the

cost center of the saddle

stitcher.

• In NodeInfo the estimated

setup and production times

are entered.

• Component contains the

description of the signature.

• Assembly defines the

sequence with collection of

the signatures.

• StitchingParams notes the

number and shape of the

staples.

• TrimmingParams contains

as information as to the

final format size of the print product as it will be eventually

trimmed.

Actually one would also expect a CollectingParams resource for the

Collecting process, and in fact it is listed in the JDF specification—

but without attributes and subelements. It is only a container for

extensions and not expanded upon here. The sequence of signa-

tures is also not defined in this resource, instead in the Assembly

resource. The AssemblySection elements are entered there with

their order and also their sequence given, where the first element

describes the outer position and the last element describes the in-

nermost position. Figure 11.9 describes this situation with three

signatures for the contents and once for the cover. With selec-

tive binding, where signatures are collected in a variable way, the

Collecting process receives further input resources (DBrules and

DBSelection). Thus, it is possible to produce for different versions

of the print product for different addressees.

Collecting
Stitching
Trimming

Component*

Assembly

NodeInfo

Device

Component+

Stitching-
Params

Trimming-
Params

Figure 11.8

GrayBox for saddle stitching

(collecting, stapling, and

three-side trimming)

176 JDF in Postpress

In conclusion, the example from which the Assembly resource in

Figure 11.9 was taken should be described in whole (although

somewhat simplified). The JDF tree is shown in Figure 11.10. In

the left column the central prepress processes are marked: proof-

ing the data on production suitability (Preflight), distillation of

the PostScript data to PDF (PSTToPDFConversion), the color space

Figure 11.9

Collecting sequence of the

signatures

<Assembly Class="Parameter" ID="_019069" Order="Collecting" "

Status="Available">

<AssemblySection AssemblyIDs="Cover_B_1"

DescriptiveName="F04-01_ui_2x1_1" />

<AssemblySection AssemblyIDs="Text_1_B_2"

DescriptiveName="F08-07_li_2x2_2" />

<AssemblySection AssemblyIDs="Text_2_B_3"

DescriptiveName="F08-07_li_2x2_3" />

<AssemblySection AssemblyIDs="Text_3_B_4"

DescriptiveName="F08-07_li_2x2_4" />

</Assembly>

Cover

Product

Interior

Collecting
Stitching
Trimming

Preflight

PSToPDF-
Conversion

ColorSpace-
Conversion

Trapping

Stripping

PreviewGeneration
InkZoneCalculation

Conventional-
Printing

Cutting

Imposition
Interpreting
Rendering
Screening

PreviewGeneration
ImageSetting

PreviewGeneration
InkZoneCalculation

Conventional-
Printing

Folding

Imposition
Interpreting
Rendering
Screening

PreviewGeneration
ImageSetting

Figure 11.10

JDF process tree

177Chapter 11

transformation (ColorSpace-

Conversion), over or under fill-

ing (Trapping), and the creation

of the imposition sheet (Strip-

ping). Often these processes are

initially outlined only through

the GrayBoxes PrepressPrepa-

ration and ImpositionPrepara-

tion. The middle two columns in

Figure 11.10 show the different

processes, or rather combined

processes for the partial prod-

ucts “Cover” and “Contents.”

Both of the combined processes

above contain the process name

PreviewGeneration, but their

functions are different. While a

preview image is defined in the

combined process Imposition-

ImageSetting, which will be vis-

ible later on the monitor of the

printing press control panel, the

preview image of the combined

process PreviewGeneration

InkZoneCalcuation is created

only for the calculation of the

ink zone presets (typically sepa-

rated images in 50.8 ppi). Since

multiple cover “ups” are found

on the press sheet, a cutting

process follows the printing pro-

cess. The content sheets, how-

ever, are folded.

Figure 11.11 outlines yet again

a part of the production process

where only the most important

“transfer resources” are shown:

The pages (RunList) for impo-

sition (Imposition), the plates

(ExposedMedia) as interface be-

tween prepress and print, and

finally the different component

resources press sheets, signa-

tures, and the finished product.

RunListRunList

Imposition
Interpreting
Rendering
Screening

PreviewGeneration
ImageSetting

Imposition
Interpreting
Rendering
Screening

PreviewGeneration
ImageSetting

Exposed-
Media

Conventional-
Printing

Cutting

Conventional-
Printing

Folding

Collecting
Stitching
Trimming

ComponentComponent

Component

Component

Umschlag Innenteil

Figure 11.11

Production process

178 JDF in Postpress

In the glossary of process names in the appendix, 50 different pro-

cesses of print production are briefly shown, but only five were

handled in more detail here (Cutting, Folding, Collecting, Stitch-

ing, Trimming). The process of die making (DieMaking) is presented

in the next chapter. All of the others, unfortunately, must remain

unconsidered.

Exercise:

Make a process chain for a perfect-bound brochure similar to Fig-

ure 11.11 where the cover is embossed with a gold foil. Look for

the necessary processes within the JDF specification and also list

the “Transfer Resources.”

Likewise, create, similar to Figure 11.10, a potential JDF tree for a

perfect-bound brochure.

179Chapter 12

12 Packaging Printing

From the perspective of the JDF/JMF model there is no fundamen-

tal difference between packaging printing, commercial printing,

and other areas of a print application. Indeed, other substrates

(such as paper board, corrugated board, film, or composite) are

used in packaging printing, as are other print and finishing ma-

chines, yet there is no change here to the JDF process point of view.

Only a few new attributes and attribute values must be defined

for some resources. The repeatedly used attribute MediaType there-

fore uses values such as CorrugatedBoard or Foil. Outside of this,

attributes for describing these

materials, such as Flute for cor-

rugated board, are introduced

(for example, in the resources

Media and in MediaIntent).

Since JDF 1.4 there is also grow-

ing support for flexo printing.

For example, the values Sleeve

and MountingTape are defined

for the attribute MediaType and

for flexo plates the values Plate-

Technology and ReliefThickness

are defined.

However, there are processes

that are mainly used in the area

of packaging. In this chapter

only a few of them will be pre-

sented and will be divided into

the three following areas:

a) Folding box design (struc-

ture design), sheet opti-

mization, die making

b) Stamping and folded

box gluing

c) Barcode management, in-

cluding stroke-width com-

pensation, especially in

flexographic printing

Figure 12.1 shows an activity di-

agram where in the example A

and B the listed processes are

Figure 12.1

“Folding carton” activity

diagram

Graphic design

Prepress

Press form
production

Press
Conventional-

Printing

Structure design
ShapeDef-
Production

Sheet Optimization
DieLayout-
Production

Die
Production
DieMaking

Stamping
ShapeCutting

BoxFolding

(I) (II)

(III)

180 Packaging Printing

seen in the context of folded box production. Line width compen-

sation in C is a partial process of the “PrePressPreparation” activity.

The activities highlighted with yellow rectangles correspond to a

JDF process. With construction design (ShapeDefProduction), the

outline, scoring, and perforation lines for one of the units is usu-

ally defined with a CAD system. With layout optimization (Die-

LayoutProduction), one or more units are subsequently placed on

the sheet multiple times so the least possible amount of material is

wasted (see Figure 12.2) and at the same time so that production

can run quickly and easily. As a rule, this procedure is carried out

with the same CAD system. Additionally, even more things which

are important for cutting die construction are laid down, such as

the register holes for the intake of the tool in the punching ma-

chine. With cutting die construction, the exported CAD data can

then be imported back again into the corresponding system for

production of the punching tool, whereby a punching tool can

consist of multiple parts (see Figure 12.3):

Figure 12.2

Single unit and unit

optimization

181Chapter 12

• Die (CutDie)

• Counter Finishing/Counter cutting die (CounterDie)

• Stripping tool (LowerStripper, UpperStripper)

• Blanking tool (Blanker)

Counter Finishing is required for forming the creases and the strip-

ping board for separating the punching waste. Die-making produc-

tion (DieMaking) creates one or more tools (Tool) for the diecutting

operations (ShapeCutting). In a stamping machine, often the cut

pieces are broken and the units are separated. Both can also oc-

cur offline, thus taking place beyond the punch. The carton blanks

then go into the feeds of a carton gluing machine, in which the

cartons are folded, glued, and closed. These operations are com-

bined under the carton gluing process (BoxFolding).

The red line in Figure 12.1 denotes special data flows. Namely, for

a graphic design of carton information about diecutting, or rather

crease curves, is required so that the design fits the carton. Often

a corresponding EPS file or the PDF paths are simply exported from

the CAD system and then read back in the graphics software so

that the designer can orient him or herself on it. In addition, with

imposition (Step&Repeat) the units are so positioned in the press

form creation that punching and creasing the press sheet exactly

Figure 12.3

Elements of a die:

rubberized die in closed

frame (right), die plate

with counter punch (top

left), press sheet (bottom

left), punched and broken-

out single unit (center), and

finished carton

182 Packaging Printing

match the unit arrangements. Since the positions of the units are

mostly set up early with the CAD system and not in the press form

creation, position data from the CAD system is commonly passed in

the form of CFF2-, DXF, or in DDES files. These are provided to both

the die mold manufacturer as well as the press form manufacturer.

Therein lies the reason why the press form manufacturer doesn’t

determine the position of the units; the production of a die takes

a longer time, especially since it is frequently outsourced. And as

a rule, the CAD drawings come at the beginning of the manufac-

turing process during the press form manufacturing; shortly before

the press date the data for the set of plates is prepared.

With simple labels (Labels), which are bounded by a rectan-

gle (BoundingBox), MIS sometimes provides the information for

Step&Repeat via instructions and communicates these both to the

die making as well as the press form preparation. For folded car-

tons, which are assembled and interleaved in a complex way on a

press sheet, a CAD system or other production software must take

over the sheet optimization.

12.1 Die Design, Sheet Optimization,

and Die Manufacturing

In Figure 12.1 Box I shows the structural design with CAD and the

die form construction while Box II shows the work steps of the

graphics production up to printing, and Box III represents the print

finishing work. The processes in I were first introduced with the

JDF 1.4 specification 1.4 and are therefore not yet currently imple-

mented in a finished JDF workflow. The examples shown here are

therefore not based on production data. The processes in Boxes II

and III were, however, already set in the specification several years

ago, and there are implementations in the market (albeit only a

few) which read and execute these JDF processes. In Figure 12.4

Box I from Figure 12.1 is no longer shown as a JDF process-resource

model. For the ShapeDefProduction process, i.e., the CAD con-

struction of a carton (or label, cardboard displays, bags, etc.), there

are two input resources available in which the optional Layout-

Element is typically entered as a sketch once the construction is

performed. The entry could be a URL of an EPS file, for example,

in which the sketch is saved. The design itself is mostly provided

by the client or an (internal or external) advertising agency. In the

ShapeDefProductionParams resource, the URL and the extent of a

3-D model of the packaging can be listed. Furthermore, it is pos-

sible to enter the name of the packaging standards, for example

from FEFCO or from the ECMA catalog. The output ShapeDef of

Figure 12.4

Die making

ShapeDef-
Production-

Params

Layout-
Element?

DieLayout-
Production-

Params
ShapeDef+

ShapeDef-
Production

DieLayout-
Production

DieLayout

DieMaking

Tool+

183Chapter 12

the ShapeDefProductionProcess describes the construction of the

carton where either an external file which holds the contours can

be referenced or the contours themselves can be entered into the

resource. In the latter case, straight lines and Bezier curves are

given as values of the CutPath attribute. The coding of the lines

and curves are carried out as with PDF (see Section 4.4.1 in [5]).

Figure 12.5 once again clarifies both possibilities. In the first case

a CFF2 file is given as a reference; in the other a path is specified.

The process resource Shape is namely of the path type in which the

PDF path is defined in the CutPath attribute. With the operator m,

the cursor is moved to a specific position. With the operator l, a

line is drawn from there. And finally with the operator c, a curve

is appended at the end of the line (m for moveto, l for lineto, c for

curveto). The operands are always listed before the operator. The

attribute DDESCutType gives the type of the cut or perforation ac-

cording to the ANSI Standard DDES3 [7].

A package can naturally consist of multiple parts as, for example,

in the case of lidded boxes. To that extent multiple ShapeDef re-

sources can be input to the LayoutProduction process. In addition,

different packaging may naturally be imposed onto a sheet. In

the resource DieLayoutProductionParams some Step&Repeat pa-

rameters can be defined, such as the order and the gaps between

the units. The DieLayoutProduction process then determines the

sheet optimization of one or more contours and generates the Die-

Layout resource in which the CAD data is described, which is nec-

essary for the die form construction and for imposition. Basically

only the location of the external file is registered here. Finally, a

physical die form (Tool) must be produced, which is described in the

DieMaking process. As mentioned, there will be dies, counter fin-

ishing and stripping, and blanking tools made, but also emboss-

ing tools for blind or hot foil stamping, which we prefer not to

elaborate upon here.

 With the workflow of graphic production, a layout for imposition

and plate burning must also be created to some extent as a coun-

terpart to the DieLayout of the die form creation. For this purpose

<ShapeDef>

<Shape ShapeType="Path" DDESCutType="101"

CutPath=" 28 28 m 10 72 l 20 140 144 150 144..."/>

</ShapeDef>

<ShapeDef Class="Parameter" ID="_4711" Status="Available">

<FileSpec URL="file://Fileserver1/CFF2/Folding.cf2"/>

</ShapeDef>

Figure 12.5

Two different possibilities

for describing folding

carton contours

184 Packaging Printing

the necessary stripping process was presented in Chapters 8 and

9 (see Figures 8.7, 8.9, and 9.8). In the area of commercial print,

the position of a single folded sheet with respect to the position

of several folded sheets is fixed and is also still noted in the sub-

element. In contrast, with the production of packaging, one uses

instead an imposition scheme; either the optimized die form con-

tours or a step-and-repeat pattern for arranging the content data.

For this purpose, this information is able to be provided by direc-

tion of certain MIS systems which in turn receive the information

from the CAD department (though not yet via JDF).

The JDF code in Figure 12.6 shows an example in which a refer-

ence to the external CAD data is entered in the BinderySignature

resource. In the StrippingParams the position of the die lines on

the press sheet is given first, similar to the example in Figure 8.8,

only that there were more folded sheets placed on a sheet. Also,

as before, the example contains the subelement StripCellParams.

It contains the end format box as well as an indication about the

clip path (Mask), which is identical to the cutting contour of the

die. The BinderySignature resources can either be a direct child of

the StrippingParams resources (as in Figure 8.9) or alternatively de-

fined outside the StrippingParams. In the latter case the Stripping-

Params must naturally contain a reference to the BinderyParams,

as seen in Figure 12.6. The BinderySignature has three subtypes

(BinderySignatureType), namely:

• Folding Pattern (Fold)

• Step and Repeat (Grid)

• Dieline (Die)

<StrippingParams Class="Parameter" ID="_001" Status="Available"

WorkStyle="Simplex">

<Position MarginBottom="36.0" MarginLeft="36.0"

RelativeBox="0.00000 0.00000 1.00000 1.00000" />

<BinderySignatureRef rRef="_4711" />

<StripCellParams Mask="DieCut" TrimSize="744.12 752.04" />

…

</StrippingParams>

<BinderySignature BinderySignatureType="Die" Class="Parameter" ID="_4711"

Status="Available">

<DieLayout>

<FileSpec URL=" file://Fileserver1/DDES3/6-Folding.dd3" />

<Station StationAmount="6" StationName="DES1" />

</DieLayout>

</BinderySignature>

Figure 12.6

Unit optimization

by CAD data

185Chapter 12

where Fold is defined as the default value. Insofar as this attribute

was not necessarily included in the previous chapters, it is now. If

the resource is from the type Die, it must contain (a reference to)

the DieLayout element. The URL of a file is specified there (“6-fold-

box.dd3”), which serves to describe the die lines. Moreover, in the

example the number of stations is given, which corresponds equally

to the number of units on the press sheet.

Figure 12.7 shows an example of a BinderySignature resource in

which the unit arrangement is defined via a step-and-repeat matrix.

As a result, the BinderySignature type is also Grid. The number of

columns and rows of the matrix is limited with the attribute Num-

berUp. So each matrix entry corresponds to a folding box cutout.

The same attribute is also applied to commercial printing when an

imposition pattern is to be defined. Then each matrix entry corre-

sponds to a pattern page. See Section 8.2, Figure 8.11. With the

FrontPages attribute, each 0 represents a unit of the same orienta-

tion whereby the sheet contains only one type of label (otherwise

multiple BinderySignatures would need to be defined).

12.2 Punching and Folded-Carton Gluing

With punching, shaped parts, the so-called cutouts, are stamped

out of a press sheet by means of an automatic punch. Then, de-

pending on the configuration in a break-apart station, the second

station of the punch automation, the punch waste is eliminated

via the break-apart tool. Finally the units are separated, which can

be done inline or offline.

These operations are collected together in JDF under ShapeCutting.

The tool (Tool) discussed in the last section is the most important,

as is the press sheet (Component). Figure 12.8 shows the model.

Naturally such input resources, which are permissible for each pro-

cess node, could, for example, come along as NodeInfo or Device.

Furthermore it should be pointed out that blind embossing can

be carried out with punch automation, and even hot foil stamp-

ing modules could be integrated into the machines. In these cases

the entire process could be described through a combined process

which includes Embossing and ShapeCutting.

Figure 12.7

Step&Repeat for labels

<BinderySignature ID="_4712" Status="Available" BinderySignatureType="Grid"

NumberUp="2 3"...>

<SignatureCell FrontPages="0 0 0 0 0 0 " Orientation="Left" />

</BinderySignature>

186 Packaging Printing

The example of a ShapeCutting process, which can be seen as a

fragment in Figure 12.9, is even simpler to build than the Figure

12.8 model. Namely, it contains no Tool input resource. As already

stated in the beginning of Section 12.1 there are currently no pro-

duction systems that make this information available. In the com-

mercial print area, a Blockname is identified in a CutBlock for the

Cutting process (see Figure 11.3); for the packaging sector it iden-

tifies a unit that is punched out. The printing process Conventional-

Printing produces a Component, which means a stack of press

sheets with the SheetName “Folded Carton – Press sheets,” out

of which then the six folded cartons (blocks) are punched.

The cutouts are then placed in production in the feeder of the

folder gluer. Then the crease lines are folded by means of a pri-

mary crusher, folded back and

finally laid flat. To this end, the

primary crusher serves to make

it easier to open the cartons

later in the packing machines.

Finally, most of the glue tabs or

glue edges are glued. Thereaf-

ter, the cartons are closed. Fi-

nally they are pressed together,

glued, and collected and deliv-

ered as a unit where the cartons

are repacked into boxes.

It is common for carton glu-

ing machines to be individually

made to order for the user. So there are special modules for car-

tons which in the same sense are unique such as those with coni-

cal forms or for chocolate boxes. In this case, components are built

from entirely different manufacturers. Often machines are even

specially constructed for an intended purpose. Otherwise as a rule

the conversion of a folder gluer is connected to many mechanical

settings that the user has to perform. For the potential case of a

repeat order, the setting values of the machine are simply noted.

Nevertheless, there are already machines that can automatically

preset themselves to a certain degree through servo motors and

software, though not by hand wheels, levers, and hex keys, which

was traditionally the case.

The adjustment of a more typical box gluer machine goes roughly

as follows. Depending on the format and the thickness of the

working cutouts, there must be a variety of settings made at the

feeder. Furthermore, one or more crush stations are set up accord-

Figure 12.8

JDF die/punching/stamping

model

ShapeCutting
Compo-
nent+

Tool*

Shape-
Cutting-
Params?

Component

187Chapter 12

ing to cutout type and thickness. Then width and length of the

glue strip and the adhesive applications rate must be adjusted in

the gluing units. Naturally the positions of the glue units are also

defined. The subsequent folding then requires a specific setting,

exactly like the subsequent pressing and collecting of the cartons.

A JDF/JMF network of carton gluing machines can—as with the

other machine—bring several benefits:

• The order data is delivered directly to the device.

• The manufacturing data is directly reported back to the

production system.

• The default data can be taken up so that the setup times are

shortened.

The third point, however, still plays a relatively minor role since

there are only a few machines on the market with automatic pre-

sets. Looking ahead to the future should nevertheless highlight

the JDF possibilities.

Figure 12.9

Die/punching/stamping

process

<JDF ID="_343" JobPartID="_1002.0" MaxVersion="1.3" Status="Part" Type="

 ShapeCutting " Version="1.3" >

<ResourceLinkPool>

<NodeInfoLink Usage="Input" rRef="_344" />

<ComponentLink Usage="Input" rRef="172"…>

<DeviceLink Usage="Input" rRef="_339" />

<ComponentLink Usage="Output" rRef="_152"…>

<ShapeCuttingParamsLink Usage="Input" rRef="_772">

<Part SheetName="Folding Sheet" SignatureName="SIG1" />

</ShapeCuttingParamsLink>

</ResourceLinkPool>

<ResourcePool>

<ShapeCuttingParams Class="Parameter" ID="_772"

PartIDKeys="SignatureName SheetName BlockName" SheetLay="Left"

Status="Available"…>

<ShapeCuttingParams SignatureName="SIG1">

<ShapeCuttingParams SheetName="Folding Sheet">

<ShapeCuttingParams BlockName="Block1" />

<ShapeCuttingParams BlockName="Block2" />

<ShapeCuttingParams BlockName="Block3" />

<ShapeCuttingParams BlockName="Block4" />

<ShapeCuttingParams BlockName="Block5" />

<ShapeCuttingParams BlockName="Block6" />

</ShapeCuttingParams>

</ShapeCuttingParams>

</ShapeCuttingParams>

…

</ResourcePool>

</JDF>

188 Packaging Printing

The BoxFolding process represents work running on a carton glu-

ing machine. BoxFolding input resources are essentially the Com-

ponents (cutouts) which arose as a result of the stamping process,

and the BoxFoldingParams are parameters which can preset the

machine. An example can be seen In Figure 12.10. In it are folding

actions (BoxFoldActions) related in the previous case to a standard

folding carton. Altogether there are ten standards predefined in the

JDF specification; beyond that, individual folded cartons can also

be defined. The BoxFoldingType here has the value Type01, which

corresponds to a carton construction as seen in Figure 12.11. The

values of the attribute BlankDimensionsX and BlankDimensionsY

are also marked in Figure 12.11. The zero point is at the bottom

left and the numbers are given in DTP points. Naturally, these val-

ues can vary and here describe only a very specific carton of this

type. With the carton type, the folding operations are also already

known; attention should be paid to the cutouts being laid down

in the feeder with the printed side toward the bottom:

• Creased on line L0 from left to right

• Creased on line L2 from right to left

And after the glue application from the bottom on the left tab

• Folded on line L1 from left to right

• Folded on line L3 from right to left

The glue line (GlueLine) is not defined in this example, but the Box-

FoldAction element corresponds exactly to the order of the fold

operations. With FoldIndex, only the first value here is critical, the

<BoxFoldingParams BlankDimensionsX="43 388 502 848 960"

BlankDimensionsY="43 78 156 465 543 578 621" BoxFoldingType="Type01"

Class="Parameter" ID="_771" PartIDKeys="SignatureName SheetName BlockName"

Status="Available">

<BoxFoldingParams SignatureName="SIG1">

<BoxFoldingParams SheetName="Folding Sheet">

<BoxFoldingParams BlockName="Block1" />

<BoxFoldAction Action="LongPreFoldLeftToRight"

FoldIndex="0 -1" />

<BoxFoldAction Action="LongPreFoldRightToLeft"

FoldIndex="2 -1" />

<BoxFoldAction Action="LongFoldLeftToRight" FoldIndex="1 -1" />

<BoxFoldAction Action="LongFoldRightToLeft" FoldIndex="3 -1" />

</BoxFoldingParams>

</BoxFoldingParams>

</BoxFoldingParams>

Figure 12.10

Preset data for a carton

gluing machine

189Chapter 12

value “-1” indicates that the folds should follow along the entire

length in the direction of travel.

12.3 Barcode

At first glance, a barcode seems to be only another graphical ele-

ment on the package, which is allowed for and naturally also re-

alized with the design. In fact, with standard business layout pro-

grams, one can create and place barcodes on the graphic design.

The generation of barcodes is indeed not directly supported by the

layout programs, but there are plug-ins for this purpose. Alterna-

tively, one can use standalone programs, in which the digits for a

barcode can be entered then a corresponding barcode font is cre-

ated. Such a font then contains only a single character that corre-

sponds to the previously defined barcode pattern. Finally the font

can be installed in an operating system and subsequently used by

any layout program. Since in the packaging sector, all of the fonts

are commonly converted into general graphic paths, then the bar-

code font must not be passed on to the print provider so the bar-

code is already compiled with the graphic design and the printer

will have nothing to do with it.

Figure 12.11

Standard folding carton

form of Type 01

0

y

x

0

43 388 502 848 960

43

78

156

465

543

578

621

L
1

L
2

L
3

L
0

Transport Direction

190 Packaging Printing

This practice has one drawback: Especially in flexographic print-

ing there is a considerable line broadening which can occur that

could cause the barcode to no longer be readable electronically.

This can lead to immense spoilage because not only is the pack-

aging unusable but also the packaged product is unusable if the

mistake is noticed after packing. So a line width compensation for

the barcode must be in the calculation beforehand. The level of

compensation depends, however, on different factors (print tech-

nology, substrate, ink, waste, etc.), so that only technical pack-

aging prepress specialists can make the requirements. Therefore,

as a rule, barcodes are not set in graphic design; instead they are

added later with plates or printing services with special packaging

prepress programs.

So that barcode details are depicted, information from the client

must be passed through to production. This communication can

be made easier with the help of JDF.

The printer receives the EAN code as a number sequence from

the client and enters it into a suitable MIS System. From there

the information is passed on in JDF to packaging prepress soft-

ware so that the employee there no longer has to enter the codes

him/herself (which always carries the risk of mistaken input). A

corresponding entry is found in Figure 12.12. The LayoutElement-

ProductionParams form an input resource of the LayoutEle-

mentProduction process. In this process either the production of

layout components like images, graphics, text, or barcodes are

described or created as complete page/units in a layout program.

On the other hand, an MIS will not define such a detailed process,

but rather a GrayBox is described like the previously mentioned

PrePressPreparation or the ContentCreation. In the subelement—

a grandchild in the sequence of generations—one finds then the

BarcodeProductionParams which contains the parameter for the

production of barcodes. Each barcode is then listed in the subele-

ment IdentificationField. In the present example, the Type of the

barcode (EncodingDetails) and the value (Value) is given. This re-

source may optionally include additional subresources and accord-

<LayoutElementProductionParams Class="Parameter" ID="_300" Status="Available">

<LayoutElementPart>

<BarcodeProductionParams>

<IdentificationField Encoding="BarCode" EncodingDetails="EAN_13"

Value="0123456789128" />

</BarcodeProductionParams>

</LayoutElementPart>

</LayoutElementProductionParams>

Figure 12.12

Definition of a barcode

191Chapter 12

ingly create references to additional resources as can be seen in

Figure 12.13. Then the BarcodeReproParams resource can, for ex-

ample, contain information about height and width of the barcode

and, as soon as they are known, the necessary line width compen-

sation is written in BarcodeCompParams.

A further advantage of barcode metadata potentially lies in qual-

ity assurance. The value can be compared with a (product) data-

base, so that it is guaranteed that the barcode actually matches the

product. That would not be so easy with a placed graphic element.

Figure 12.13

“Resource tree” for the

LayoutElementProduction

process

Barcode-
Production-

Params

Layout-
Element-

Production-
Params

Barcode-
Comp-
Params

Layout-
Element-

Part

Barcode-
Repro-
Params

192 Packaging Printing

193Chapter 13

13 JDF/JMF Projects

While the last twelve chapters could be reasonably backed up by

facts, we now move ourselves onto very thin ice. JDF projects are

very unique, and the project management methods are not always

the same. So it is difficult to give general rules or even tips for a

new implementation or upgrading of JDF workflows. Also are our

observations are surely coined at least in part from our personal

experiences. Finally, we also want to portray the implementation

as neither too rosy nor too gloomy. In order to make it easier for

us, we divide JDF projects into the three types:

• Workflow implementation with modules from a single vendor

• Workflow implementation with modules from multiple vendors

• Workflow implementation with modules from several vendors

and proprietary software customizations

But before we discuss these three cases in the following sections,

we want to make a few general remarks even if it can be perceived

as the proverbial “Sunday sermon.” Above all, at the beginning

of such a project, it is important to minimize the expectations of a

JDF workflow. Namely, what one can and can’t expect from a JDF

workflow must be considered and depend largely on the require-

ments of the particular operation. The less one knows about the

topic the harder it naturally is to correctly evaluate the complex sit-

uation, especially as so often the devil is in the details. Sometimes

miracles are expected, like, for example, that the current business

organization suddenly steers itself into orderly paths. Or the em-

ployees in the pressroom are disappointed that the much-discussed

“JDF Workflow” is not even noticed. Sure, now they receive a cou-

ple of default values, but was that all? And one must admit that

many of the “beautiful improvements” which are reached with

JDF/JMF are also previously available with vendor-specific solutions.

Then there was already plant data collection and also cross-depart-

mental exchange of data from order data and preset values. Nev-

ertheless, it is our opinion the JDF/JMF concept is forward looking

and much more broad and yet, for that purpose, as vendor over-

lapping as anything previously existing. The potential is surely not

yet exhausted.

To be clear about the expectations means, in other words, defining

the arguments for the engagement in a JDF/JMF project. Should

the cost transparency be increased, the internal and/or external

communication simplified, the failure rate reduced, the production

194 JDF/JMF Projects

steps improved and possibly even automated, planning optimized,

and the costs reduced? Or everything all at once? The problem is

the same here for all, that one is glad to maintain these buzzwords

and not go into the details—where, and how exactly, which com-

munications should be improved and so on. The reasons are too

abstract and nebulous hopes are tied to it, which then of course

cannot be fulfilled.

It must also clearly define goals both in technical as well as from a

business point of view. The basis is the analysis of the actual state.

The examination of the workflow can even be valuable alone, even

if a result may show that the JDF networking for a business is not

suitable. Because in this case the analysis uncovers deficiencies

and corresponding solutions are found which go in a totally dif-

ferent direction. Apart from that, the analysis helps to find realis-

tic goals for a JDF engagement. In short, the printer should write

a functional specification on the proposed JDF interfaces and con-

firm the compliance of the demands from the potential suppliers.

A JDF/JMF project must be viewed as long-term (key word “scal-

ability”). First it is simply just more work and only later brings ben-

efits for the company. Therefore, all also agree that one should ap-

proach such a networking project in multiple phases and define

milestones. This is how the milestones could be made out (which

naturally must be much more concretely defined):

• Networking of MIS to prepress

• Networking of MIS/prepress to the pressroom

• Plant data collection from production to MIS

• Integration of selected finishing machines in the network

• Customer connection

As a rule MIS forms the beginning of a JDF network. Where ex-

actly one then proceeds depends largely on the available equip-

ment. Because, for example, one will not purchase a new folding

machine with a servo motor only because this (sensibly) fits in a

JDF environment. That would certainly not be right economically.

Instead, it is more likely existing machines, to which JDF interfaces

are available, should be upgraded or JDF compatibility should be

valued when overdue on a new purchase.

In all three of the cases presented, it requires the active participa-

tion of the users, whereby the degree of necessary participation

195Chapter 13

increases in accordance with the task list. We would like to quote

James Harvey, the executive director of the CIP4 Organization [21]:

Implementing process automation, even with JDF, requires

active participation by the printer’s staff. Different vendors have

different philosophies for how they are implementing process

automation, and printers may find themselves acting as proj-

ect managers to work out issues that may arise when multiple

systems are integrated.

Participation should therefore not only be ordered from above, but

the work atmosphere should preferably be characterized by team

spirit and joy of innovation. Then workflow management systems

(with or without JDF) change and blur the boundaries of the re-

sponsibility and departments. So typically we find in a JDF environ-

ment that a skills shift occurs from prepress through order man-

agement, and, where need be, employees must then change their

position. The increase of transparency naturally also results in the

objective evaluation of job performance. Employees will not sup-

port the project if a climate of mistrust and competition prevails.

Just the actual analysis can cause resistance with the employees.

Finally it must also be decided by consensus who has access to

which digital data and also who has read access only or may also

have write access.

13.1 Workflow Implementation with Modules

from a Single Vendor

Naturally the effort to set up a JDF workflow is reduced when

only one manufacturer is involved. Nevertheless it is not to be ne-

glected because the adoption to the production methods and de-

vices of a business must naturally take place. This also can and

should not be carried out by the manufacturer under its own aus-

pices because this means that with each small change in the ser-

vice one must take it.

A WMS administration in the print shop must also network, for ex-

ample, new devices in the workflow, manage users, and set default

values for production. Since the different JDF modules must run off

of several distributed servers, an IT manager (or several) must be

responsible for these computers and for the network and control

their access rights to one another. In practice, things may happen

like some required service suddenly quitting or a computer, due to

automatic operating system update, may reboot. Only if each em-

ployee knows how to respond to such disruptions will you be able

to enjoy the JDF workflow for a long time. For a stable configura-

196 JDF/JMF Projects

tion, an IT administrator and a workflow administrator are required,

though it is better if this knowledge lies in hand. Since this posi-

tion is extremely important, a second person (redundancy) at least

should be available to control these two systems. Depending on

the scope of the JDF network this can be a very difficult task. For a

far-reaching workflow system, even complete oversight at the ad-

ministrator level is no easy task for the responsible employee. And

even with the manufacturers one tends to meet specialists rather

than technically accomplished generalists.

Even if only one manufacturer is responsible for the workflow in-

stallation, a JDF implementation changes over time and is also usu-

ally implemented in stages. Because the JDF workflow systems are

still in the flux of constant changes and software patches, updates

and extensions must regularly be recorded and subsequently tested.

It can be helpful here to work with virtualization or disk images so

that in the case of error it is easier to go back to an earlier version.

When a new JDF workflow is to be installed in a business, the con-

figuration should be reviewed by the vendor as soon as possible

or one of its reference customers should be reviewed and tested

with the typical orders of the print shop. This is because automa-

tion might function very well for one product or product group,

but not for others. This can be for a variety of reasons. For exam-

ple, an MIS that can access only one fixed folding catalog, not a

specific imposition template, naturally cannot pass the information

on to production. Or certain details that describe a type of produc-

tion are simply not passed along or will be faulty. Some matrices

that show which systems are compatible with each other are only

an initial, rough assessment. Nevertheless, compatibility must still

be tested in detail. Insofar as perhaps one will use workflow au-

tomation for only one part of the orders, others will still require

much manual intervention.

The introduction of a JDF workflow requires, as already mentioned,

well-defined production rules. But these could also inhibit short-

term changes in orders from being easily quickly and quickly trans-

acted. Realizing subsequent changes in a strongly regulated and

automated workflow is, at times, a contradiction in terms, how-

ever, a frequent necessity in everyday practice. The change effort

with the JDF workflow can be higher than before with a run ticket

depending on how far the order has already been processed. For

a complex JDF workflow system, many computers, the network,

and various programs must function simultaneously. Then, natu-

rally, there are failures, and failure containment is not easy, since a

hardware defect on a network switch, for example, can cause an

197Chapter 13

error in the application and a corresponding (misleading) failure

message. Thus it may be a long time until an error can be reme-

died, but in order to keep production running, it can be helpful

to have an emergency workflow defined. For example, the press

in this circumstance should be able to print with one set of plates

without that preset data. That may sound obvious, but it is not,

because the impact is sometimes quite hidden. If, for example, the

positions of the register marks are not provided in the JDF, the in-

line registration in the press may no longer work properly, and so

on. Or one of the JDF workflow attached digital presses should,

if necessary, be able to process directly if the JDF communication

causes problems.

Not every automation scenario that is conceivable and offered al-

ways make sense. That goes, of course, not only for the economics

but also for technical aspects; there are limitations in this regard. If

the start of subsequent processing is dependent on approval from

the customer, or if the person responsible for production is made

dependent on certain events, this can unnecessarily hamper the

production process.

So, for example, the preparation of a job in the press control panel

could be made to depend on the completion of the printing plates,

which means the JDF data with the parameters for the print job

would then first be sent or copied to the hot folder of the MIS, or

alternatively the productions system holds information about the

completion of the corresponding press plates from the plate burner.

This entirely sensible arrangement, however, then creates problems

if the response of the plate burner—for whatever reason—is dis-

rupted. Then, indeed, the set of plates is available and in princi-

ple all of the preset data are also available for the press and never-

theless it goes no further because either the system or at least the

press did not receive the appropriate information.

13.2 Workflow Implementation with Modules from

Multiple Vendors

Everything that was mentioned in the last section naturally applies

in the case that multiple providers participate in a JDF workflow.

However, a few additional considerations arise.

The interface problem is well known in digital technology: if a soft-

ware module from one vendor generates a data format for a pro-

gram of another, there is no clear responsibility if the communica-

tion doesn’t function. This also goes for JDF as well as for any other

format. Since JDF and JMF are still comparatively new (for exam-

198 JDF/JMF Projects

ple, in comparison to PDF) you will encounter incompatibilities with

these formats. Above all, an in-depth analysis is recommended

with the new installation and also with version updates. But this

is actually only possible for the JDF data exchange and also only

then if the JDF is passed via a hot folder and not sent in a MIME

packet over HTTP. Indeed, you could intercept the packets, but

this is somewhat cumbersome. The same goes for JMF messages.

Sometimes you can adjust with workflow components whether

the communication should run via files or HTTP. You should de-

cide here on the file type when you wish to investigate interfaces.

If you don’t yet have the JDF devices installed, you want to check

their communication among one another so you must ask to cre-

ate JDF from one vendor and ask another to read it. In another

case, you can analyze the interface directly. Many vendors also have

white papers that specify which requirements a JDF file must sat-

isfy in order for the software to be read and processed. If not, the

vendor can provide sample data which can be read successfully for

the software that imports JDF.

An analysis of the JDF file could begin with a validity check (see Sec-

tion 5.2). This can be done on the CIP4 website under “Technical

Resources,” choose the menu item “Check JDF Server,” and then

load the JDF file with the file service “Check JDF.” A report then

shows possible errors first, for example missing attributes which

are obligatory or links that are not able to be resolved. Optionally,

private extensions can also be marked as errors. At the same site

you can choose the “Fix JDF” service and a JDF file is repaired and

brought to a defined version. As expected, the automated repair

has its limitations. If you are a CIP4 member, then you can down-

load the program “CheckJDF.exe” and an additional DLL file under

“Technical Resources,” “Downloads,” “Internal Source.” You can

also validate JDF files with the “JDF Editor” which can be down-

loaded free from the CIP4 website (See Figure 13.1).

It can also be helpful to show the values of the ICSVersions attri-

butes and perhaps to consider if the JDF program is based on dif-

ferent ICS versions. The same goes also for the JDF versions listed

in the Version attribute. However, experience (or also a healthy

mistrust) shows that the specified version levels do not always

agree with reality.

There can be many different reasons, when reading a JDF file, a

file aborts because of a failure. Perhaps a resource is not directly

on the JDF node that is required, instead—fully legally—it stands

only at the root level and is not found (see Figure 6.5 in Section

199Chapter 13

6.1). Such problems are difficult to analyze without the source

code of the importing software to debug it. It helps the most to

begin first with tests with very simple JDF files and gradually be-

come more complex. On the other hand, it is easier if only single

values that should actually be transmitted are not shown in the

JDF reading software. Then one can easily see whether the cor-

Figure 13.1

Validation function in the

CIP4 JDF Editor

200 JDF/JMF Projects

responding element/attribute exists therein and can at least pass

the buck to the two vendors involved. Although, of course, this

not always enough to correct the manufacturer’s defect in a rea-

sonable amount of time.

JDF files can, by the way, be quite large. The examples in this book

are always only excerpts. In reality, in certain circumstances, JDF

files can be many A4 pages long and contain several dozen JDF

nodes, which, of course, complicate the analysis.

We wish to clearly say yet again: Although JDF is an industry stan-

dard, unfortunately the interfaces do not function without fric-

tion. This may be due to private data which are transported in the

JDF (see “Standardization” in Chapter 2); as a rule it is more likely

the JDF structure and the missing or false information is in the JDF

data. JDF interfaces between modules of different vendors do not

function by themselves alone, but must be adapted. Indeed these

are tested between the manufacturers, but there are always sit-

uations, especially with complex jobs, where errors appear. And

these errors remain inexplicable to users since they have neither

the time nor the tools and perhaps also not the know-how to sat-

isfactorily analyze a problem.

13.3 JDF/JMF Programming

This section is addressed to the people who will be starting a soft-

ware project and also have a little experience with the JAVA or

C++ languages, but not yet with the programming of JDF applica-

tions. It is not directed at professional software developers and ex-

perts who are interested in spe-

cial tips and tricks.

Naturally, JDF importing or ex-

porting software can be cre-

ated in any language. For ex-

ample, you can easily create a

user interface like in Figure 13.2

with Visual Basic for Applica-

tions and also write a small pro-

gram that takes the input vales

from the dialog box and cre-

ates a JDF file with Customer-

Info as a resource (correspond-

ing to the example in Figure

6.8). Only then you can not re-

sort to a library and the code is

Figure 13.2

GUI from a simple JDF

application

201Chapter 13

laborious to create and very prone to errors. An excerpt of such a

quick-and-dirty program is seen in Figure 13.3. In fact, this exam-

ple program creates no fully correct JDF code because, for exam-

ple, both of the obligatory attributes Class and Status are missing.

Of course, it would be extended accordingly. It is even more ardu-

ous to write software that reads this type of JDF if no suitable li-

brary is available. In all, such action is discouraged if one wants to

develop reliable software.

Fortunately, CIP4 has created exactly such libraries, but only for

JAVA and C++. Therefore, you should develop JDF software in one

of the two languages. We will only discuss the JAVA library in the

following section. First, decide on an (integrated) programming en-

vironment. The list of possibilities is long—we programmed the ex-

ample specified here with the help of the Eclipse development En-

vironment [17], but sometimes we also worked with NetBeans IDE.

In Eclipse you first define a new “Project,” where libraries can be

bound in the form of jar files. The following libraries are required

for the development of JDF applications—they can be downloaded

from the Internet:

Private Sub write_CustomerInfo()

CustomerInfoID = 11101

Print #1, " <ResourcePool>"

Print #1, " <CustomerInfo CustomerID=" & """" & CustomerID & """" & "

CustomerJobName=" & """" & CustomerJobName & """"

Print #1, " CustomerInfoID=" & """" & CustomerInfoID & """" & "

CustomerOrderID = " & """" & CustomerOrderID & """" & " > "

Print #1, " <Comment>" & Comment & "</Comment>"

Print #1, " <Contact Class=" & """" & "Parameter" & """" & "

ContactTypes=" & """" & "Customers" & """"

Print #1, " ID=" & """" & ContactRef1 & """" & "

Status=" & """" & "Available" & """" & ">"

Print #1, "<Person FirstName=" & """" & FirstName & """" & "

FamilyName=" & """" & FamilyName & """" & "

NamePrefix=" & """" & NamePrefix & """" & ">"

Print #1, " <ComChannel ChannelType=" & """" & "Phone" & """" & "

Locator=" & """" & Telefon & """" & "

Status=" & """" & "Available" & """" & "/>"

Print #1, " <ComChannel ChannelType=" & """" & "WWW" & """" & "

Locator=" & """" & Website & """" & "

Status=" & """" & "Available" & """" & "/>"

Print #1, "</Person>"

Print #1, "<Address City=" & """"; City & """" & "

Street=" & """" & Street & """" & " Country=" & """" & Country & """" & "

PostalCode=" & """"; PostalCode & """" & "/>"

Print #1, " </Contact>"

Print #1, " </CustomerInfo>"

Print #1, " </ResourcePool>"

End Sub

Figure 13.3

Cumbersome VB program

that can create JDF

202 JDF/JMF Projects

• XercesImpl.jar (our Version 2.9.0),

• Commons-lang.jar (our Version: 2.3),

• JDFLibJ.jar (our Version 2.1.3.4—see www.cip4.org).

In our small example we have programmed an application which

includes the following features (see Figure 13.4):

• JDF files are read and displayed from a selectable hot folder.

• With a double-click on a job, some details of the job are

extracted and displayed (JobID, Order Name, Sheet Size, Run

Length).

• In this window, four command buttons are defined: “order

begin,” “waste paper,” “good sheets,” “end of job.”

Hot Folder

Socket

Workflow-
Server

InterfaceJAVA Program analog

Machine

Figure 13.4

Project to connect JDF/JMF

to a machine

public Main window (){ // Constructor

...

ListWin = new Thread(this);

ListWin.start();

...

}

public void run(){

while (true){

try{

jobliste.removeAll();

dateien = ordner.list();

for (int i =0; i< file.length; i++){

jobliste.add(dateien[i]);

}

this.add(jobliste);

repaint();

Thread.sleep(10000);

}

catch(InterruptedException e){

e.printStackTrace();

}

}

}

Figure 13.5

Realization of a hot folder

203Chapter 13

• After clicking the “order begin” button, all sheets are counted

with a photo sensor which all go through a printing press

without a JDF interface; one chooses “waste paper” or “good

sheets” so the appropriate meter is set.

• If the “end of job” button is pressed, the program sends a JMF

message to a configurable IP address and TCP port.

Naturally, we cannot show the entire source code here, instead

only a couple of interesting snippets.

In Figure 13.5 one can see a thread with the name ListWin, which

regularly reads file names out of a hot folder and then goes back

to sleep. It is started in the main window. If the thread is activated,

the entries from the job list are first removed, then the names of

the files in the hot folder are reentered into the list and, finally, the

result is displayed in the main window.

The parsing and reading of attribute values is shown again in Fig-

ure 13.6. First the JDF document JDFDoc is parsed and the root

element is identified with the name Root. Attributes of the root

element, like the JobPartID, are very easily pulled out. Also the Re-

sourcePool, which we have called RSP, can be found via the root

and from it the specific resources like CustomerInfo. One can clearly

see here how easy the whole thing is; we have partly left out a cou-

ple of security questions for clarity. So, for example, we simply as-

sume that the resource CustomerInfo exists and this, in turn, con-

tains the attribute CustomerJobName.

The last thing we want yet to introduce is the source code in Fig-

ure 13.7 for sending a JMF signal. The JMF message and the HTTP

header are assembled therein. A DeviceInfo and a JobPhase node

element are created and filled with attributes. Finally, everything

is written in the string Content. There is nothing more to see here,

like a new socket is created with the help of IP and port address,

and into it the JMF message and HTTP header are written. The re-

sult of this small program is a JMF signal of the type in Figure 13.8.

JDFDoc JDFDocument = JDFDoc.parseFile(pfad + dateiname);

final JDFNode Root = JDFDocument.getJDFRoot();

...

String JobPartID = Root.getJobID(true);

...

JDFResourcePool RSP = Root.getResourcePool();

final JDFResource CustomerInfo = RSP.getResource("CustomerInfo",0,"");

CustomerJobName = CustomerInfo.getAttribute("CustomerJobName");

Figure 13.6

Parsing and reading of

attribute values

204 JDF/JMF Projects

In certain cases one would perhaps not like to write an actual

JDF/JMF application but instead maybe only transform a vendor-

specific software XML interface to a JDF interface or maybe only

slightly modifying JDF files. Then an XML document must also be

transformed into another XML form. This task can also be done

using the Extensible Stylesheet Language Transformation

(XSLT). This requires you to write an XSLT document, which then

controls the document transformation. However, since there are

many books (for example [9]) on this topic, we do not wish to go

farther at this point.

HTTP/1.1 200 OK

Content-Length: 509

Content-Type: text/html

<?xml version="1.0" encoding="UTF-8"?>

<JMF xmlns="http://www.CIP4.org/JDFSchema_1_1"

TimeStamp="2008-12-02T18:32:24+01:00" Version="1.3">

 <!--Generated by the CIP4 Java open source JDF Library version : CIP4 JDF

 Writer Java 1.3 BLD 40-->

<Signal ID="m081202_063224609_000000" Type="Status"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="SignalStatus" />

<DeviceInfo DeviceStatus="Running">

<JobPhase JobID="_08-0157" JobPartID="_08-0157" TotalAmout="300" />

</DeviceInfo>

</JMF>

Figure 13.7 (top)

Source code for the sending

of JMF signals

Figure 13.8 (bottom)

JMF signal with HTTP

headers

JMFMessage(String JobID,String JobPartID, Long goodCount){

String DeviceStatus = "Running";

//Construct a JMF-Message, i.e. the content of the http-package

JDFJMF JMF = JDFJMF.createJMF(EnumFamily.Signal,EnumType.Status);

KElement DI = JMF.appendElement("DeviceInfo");

DI.setAttribute("DeviceStatus", DeviceStatus);

KElement JP = DI.appendElement("JobPhase");

JP.setAttribute("TotalAmout", goodCount.toString());

JP.setAttribute("JobID", JobID);

JP.setAttribute("JobPartID", JobPartID);

String content = JMF.toXML();

//construct a http-header

long length = content.length();

String header = "HTTP/1.1 200 OK" + "\nContent-Length: " + length +

 "\nContent-Type: text/html";

...

}

205Bibliography

Bibliography

[1] Adobe System:

Adobe PDF Print Engine 2, White Paper,

http://www.adobe.com/de/products/

pdfprintengine/ (2008)

[2] Adobe System Incorporated:

XMP Specification,

http://www.adobe.com/devnet/xmp/ (2004)

[3] Adobe System Incorporated:

TIFF Revision 6.0,

http://partners.adobe.com/public/developer/en/

tiff/TIFF6.pdf (1992)

[4] Adobe System Incorporated:

PostScript Reference Language, 3. Ausgabe,

Addison Wesley Publishing Company,

ISBN 0-201-37922-8 (1999) oder

http://www.adobe.com/products/postscript/

pdfs/PLRM.pdf

[5] Adobe System Incorporated:

PDF Reference sixth edition, Adobe Portable

Document Format, Version 1.7,

http://www.adobe.com/devnet/pdf/pdf_

reference_archive.html (2006)

[6] Adobe System Incorporated:

Portable Job Ticket Format, Version 1.1,

Technical Notes # 5620 (1999)

[7] ANSI:

IT8.6-2002 (R2007) Grafic technology –

Prepress digital data exchange – Diecutting

data (DDES3)

[8] Apple Inc.:

AppleScript Overview,

http://developer.apple.com/documentation/

AppleScript/Conceptual/AppleScriptX/

AppleScriptX.html (2007)

[9] Behme, Henning und Mintert, Stefan:

XML in der Praxis:professionelles Web-

Publishing mit der Extensible Markup Language,

Addison Wesley, ISBN 3-8273-1636-7 (2000)

[10] Bohan, Mark et al:

Automation and JDF Workflow, 2006 TAGA

Proceedings

[11] CGATS.20:

Variable printing data exchange using PPML

and PDF (PPML/VDX),

www.npes.org (2002)

[12] CIP4:

Interoperability Conformance Specifications,

Version 1.3 www.cip4.org/ (2007/2008)

[13] CIP4:

JDF-Specification Release 1.4,

www.cip4.org (2008)

[14] CIP4:

The JDF Marketplace;

http://www.cip4.org/marketplace/

[15] Commerce XML (cXML) User’s Guide, Version

1.2.019, http://www.cxml.org (2008)

[16] Dolin, Penny Ann:

Exploring Digital Workflow,

Thompson Delmar Learning,

ISBN 1-4018-9654-5 (2006)

[17] Eclipse Foundation:

Eclipse IDE for Java Developers,

http://www.eclipse.org/downloads

[18] Freund, Jacob; Götzer, Klaus:

Vom Geschäftsprozess zum Workflow,

Carls Hanser Verlag München,

ISBN 978-3-446-41482-2 (2008)

[19] Ghent PDF Workgroup:

PDF/X Plus

www.gwg.org

[20] Hamilton, Eric:

JEPEG File Interchange Format, Version 1.02,

http://www.jpeg.org/public/jfif.pdf (1992)

[21] Harvey, James:

About the JDF User Group

http://www.jdfusergroup.org/

unter: Grafic Arts Information Network

http://www.gain.net [Zugriff April 2009]

[22] Hoffmann-Walbeck, Thomas:

Lehrbuch Digitale Druckformherstellung,

dpunkt Verlag, ISBN 3-89864-182-1 (2004)

[23] International Organization for Standardisation

(ISO) 15930: PDF/X Teil 1 bis Teil 8,

Beuth Verlag (2001 – 2008)

[24] International Organization for Standardisation

(ISO) 12647: Teil 1 bis Teil 7,

Beuth Verlag (2001 – 2007)

206 Bibliography

[25] International Organization for Standardisation

(ISO) 16612-2: Grafic technology – Variable

data exchange – Part 2: Using PDF/X-4 and

PDF/X-5 (PDF/VT-1 and PDF/VT-2),

under development (2008)

[26] International Press Telecommunication Council

(IPTC): http://www.iptc.org

[27] Japan Electronics and Information Technology

Industries Accociation(JEITA):

http://www.jeita.or.jp/english/

[28] JEITA:

Exchangeable image file format for digital still

cameras: Exif Version 2.2,

JEITA CP-3451 (2002)

[29] Kipphan, Helmut:

Handbuch der Printmedien,

Springer Verlag Berlin, Heidelberg, New York,

ISBN 3-540-66941-8 (2000)

[30] Kodak Grafic Communications:

“Prinergy 4 Software and Rules-Based

Automation”, White Paper, http://grafics1.

kodak.com/documents/Release%20date.doc

(2007)

[31] Koster, Kai:

Informations- und

Kommunikationstechnologien für

Unternehmen,

Carl Hanser Verlag, ISBN: 3-446-2118-3 (1999)

[32] Kühn, Wolfgang; Grell, Martin:

JDF: Prozessintegration, Technologie,

Produktdarstellung,

Springer Verlag Berlin Heidelberg,

ISBN 3-540-20893-3 (2004)

[33] Kular, Christopher:

The Job Definition Format and Print Media,

International Journal Of The Book,

ISBN: 1447-9516 (2007)

[34] Microsoft: Windows Script Host,

http://www.microsoft.com/downloads

[35] Mittelhaus, Michael:

Automatisierung in Druckunternehmen,

Bundesverband Druck und Medien e.V (bvdm),

Art-Nr. 83107 (2005)

[36] PODi - the Digital Printing Initiative:

Personalized Print Markup Language –

Functional Specification, Version 2.2 (2006)

[37] PODi - the Digital Printing Initiative:

Personalized Print Markup Language –

Imposition Specification, Version 2.2 (2006)

[38] PODi - the Digital Printing Initiative:

Personalized Print Markup Language – Grafical

Art Conformance Specification Specification,

Version 2.2 (2006)

[39] PODi - the Digital Printing Initiative:

Digital Print Ticket – Printing with PPML and JDF,

Version 2.0 (2005)

[40] PrintTalk Version 1.3, http://www.cip4.org

(2007)

[41] Schwabe, Gerhard et al (Hrsg.):

CSCW-Kompendium,

Springer Verlag, ISBN 3-540-67552-3 (2001)

[42] St. Laurent, Simon; Fitzgerald, Michael:

XML, O’Reilley Verlag Köln,

ISBN: 13 978-3-89721-516-0 (2006)

[43] Workflow Management Coalition, www.wfmc.

org

[44] W3C (Dave Beckett):

Resource Description Framework (RDF),

http://www.w3.org/RDF/

[45] W3C:

Web Services Description Language (WSDL)

Version 2.0,

http://www.w3.org/TR/wsdl20-primer/ (2007)

207Glossary

Glossary

AM/FM screen AM is the acronym for “amplitude modulation,“ a type of plate screen based

on halftone dots that vary in size to create the perception of highlight-to-

shadow areas of the print. FM stands for “frequency modulation,“ a halftone

technique where the dots are of equal size and tones are created by varying

the concentration of dots (highlight areas have sparse concentration of dots

while shadow areas have dense concentration of dots).

ASCII85 Coding one Byte stream with 85 different bit patterns, in the ASCII character

set with all printable characters represented.

Assembly Placing film or paper elements together in order on a suitable substrate.

Bitmap An image represented by an array of picture elements (pixels), each of which is

encoded as one or more binary digits.

Bytemap Data structures for images with (at least) 8-bit color separation (256 shades).

Color depth Number of bits needed to store one pixel or tone.

Color management The use of software to automatically determine the color reproduction

characteristics of scanners, monitors, and output devices, and then

to automatically make the image settings necessary for optimal color

reproduction. Color management attempts to simply color reproduction by

putting color expertise and science into software.

Commercial printing Business and private printed matter, such as business cards, stationery,

promotional brochures, and catalogs. Periodicals such as magazines or

newspapers, books, and packaging are not generally included.

Displacement Also called “shingling.” Condition that results when the outside edges of the

pages in a saddle-stitched book project out, nearer to the center.

Form proof Also called a “page proof.” Usually not a color-accurate printout from one

press sheet on a large-format inkjet press to check a printed form with regard

to page position and control marks.

Gripper margin The area of the paper on a sheetfed press that is drawn through the press by

mechanical fingers (grippers). This margin can contain no image.

High/low folio Gripper fold. Overhang on a folded sheet (front or back) for the automatic

opening of a folded sheet that is used by a saddle stitcher with grippers.

Hot folder Unidirectional interface between two software modules, realized with a folder.

One software module writes data in the folder on a regular basis while the

other checks on the arrival of files.

Imposition Arranging the pages of a job on a printing form during the prepress stage of

production so that when printed, folded, trimmed, and bound, all content

appears in the proper sequence and orientation. Control marks needed by the

press, finishing, and binding operators are also placed on the imposition. Page

layout is the process of defining where repeating elements such as headlines,

text, and folios (page numbers) will appear on multiple pages throughout

a document, while imposition can be thought of as defining where these

completed pages will appear on much larger sheets of paper. The binding

method affects the imposition and assembly order. Imposition involves not

only pages but other print job graphics as well, such as multiple copies of a

label. Imposition in a digital print workflow is done using special imposition

software.

208 Glossary

Imposition layout A guide that indicates folding sequence, number of pages and signatures used,

guide and gripper edges, and cutting and scoring lines for a specific job.

Ink zone presetting Values for presetting the ink feed supply quantities in offset inking, which can

be set by zones.

Inline finishing Manufacturing operations such as numbering, addressing, sorting, folding,

diecutting, and converting that are performed as part of a continuous

operation right after the printing section on a press or on a single piece of

equipment as part of the binding process. In-line finishing is common in web

printing operations.

Interpretation Transforming a page description language in the RIP into an internal data

format, called the “Display List.”

Normalizing Converting customer content data into a unified PDF format.

Nutzen Positioning the same products, such as page sides or folding cartons, on a

printed sheet.

Order management system Also known as “industry software” or “management information system.“

Software for costing and job management.

Papierbeginn Distance from lower edge of plate to the paper of the printed sheet.

Paper class Classification of printing papers according to ProzessStandard Offset (PSO). ...

Or ISO??

Preflight In prepress, an orderly preventive procedure using a printed checklist or special

software to verify that all components of a job (e.g., digital text files and

high-resolution image files) are present and correct prior to submitting the

document for high-resolution output and to identify potential problems that

could cause rework or even rerunning a whole job.

Pressrun After the machine is set up, the print run that produces good sheets.

Rendering Conversion of the mathematical descriptions of objects as described in page

description languages (for example, PDF) into halftone images.

RIP Raster image processor. In computer graphics and imaging, the hardware and

software configuration used in output devices to determine what value each

pixel or spot of output should possess, driven by commands from a page

description language such as PostScript. This bitmap is used to guide the laser

source in an imagesetter or other recording device (like a platesetter) to image

the film, paper, or plate.

Run-length compression Lossless compression method in which the number of repetitions is stored as a

bit value.

Running direction Fiber direction (grain) of the paper.

Screen frequency A measurement equaling the number of lines or dots per inch (lpi) on a

halftone screen. The higher the screen ruling, the greater the detail in the

halftone. Screen rulings range from only a few per inch for large billboards to

over 200 lpi for high-quality printing on coated paper.

Screen type Divided into AM or FM screens.

Screening The process of converting a continuous-tone photograph to a matrix of dots

in sizes proportional to the highlights and shadows of the continuous-tone

image.

Setup Preparation of the machine.

TIFF-B Common file format for storing bitmaps.

209Glossary

Transfer curve Also called “tone compensation curve” or “calibration curve process.” Curve

or table for altering the tonal values in the RIP.

Trapping (1) Printing a wet ink over a previously printed dry or wet ink film. (2) Creating

thin overlaps between adjoining colors to compensate for misregister in

prepress and press operations. If the colors are not trapped, the misregister

may result in small areas of unprinted paper where colors would normally

abut.

Trimbox Auch Endformatrahmen genannt. Größe des beschnitten Formats des

Druckproduktes

Web-to-print Layout of a printed product via Internet browser, with standard templates

used as the basis.

210 Abbreviations

Abbreviations

B2B Business-To-Business

CFF2 Common File Format, Version 2

CIE Commission Internationale de l‘Éclairage

CIM Computer Integrated Manufacturing

CIP3 International Cooperation for Integration of Prepress, Press and Postpress

CIP4 International Cooperation for Integration of Processes in Prepress, Press and Postpress

CSCW Computer Supported Cooperation Work

CTM Current Transformation Matrix

CtP Computer-to-Plate

cXMP Commerce Extensible Markup Language

DDES Digital Data Exchange System

dpi Dots per Inch

DTD Document Type Definition

DXF Drawing Exchange Format

ECMA European Carton Maker Association

EPS Encapsulated PostScript

ERP Enterprise Resource Planing

Exif Exchangeable Image File Format

FEFCO Fédération Européenne des Fabricants de Carton Ondulé

GPS Global Positioning System

HdM Hochschule der Medien

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ICC International Color Consortium

ICS Interoperability Conformance Specification

IPTC International Press Telecommunication Council

JDF Job Definition Format

JFIF JPEG File Interchange Format

JPEG Joint Photografic Experts Group

211Abbreviations

JEITA Japan Electronics and Information Technology Industries Association

JMF Job Messaging Format

JTP JobTicket Prozessor

MIME Multipurpose Internet Mail Extensions

MIS Management Information System

OMS Order Management System

PDF Portable Document Format

PDF/VT PDF Variable Transactional

PDL Page Description Language

PJTF Portable Jobticket Format

PPF Print Production Format

ppi Pixel per Inch

PPML Personalized Print Markup Language

PS PostScript

RBA Rules-Based Automation

RDF Resource Description Framework

RFQ Request for Quote

RIP Raster Image Processor

SOAP Simple Object Access Protocol

TIFF Tag(ged) Image File Format

UCS Universal Multiple-Octet Coded Character Set

URI Uniform (Universal) Resource Identifier

URL Uniform Resource Locator

UTF UCS transformation format

VDP Variable Data Printing

W3C World Wide Web Consortium

WfMC Workflow Management Coalition

WMS Workflow Management System

XSD XML Schema Definition

XML Extensible Markup Language

XMP Extensible Metadata Platform

XPS XML Paper Specification

XSLT Extensible Stylesheet Language Transformation

212 Index

A

abonnieren

abstrakte Ressource

Agent

AgentName

AgentVersion

Aktivitätendiagramm

Akzidenzdruck

AM-Raster

Amount

AmountPool

Ancestor

Anpassbarkeit

Approval

ApprovalParams

ApprovalSuccess

ASCII85

Assembly

AssemblySection

Attribut

Attributnamen

Attributwert

Audit

AuditPool

Auftragsmanagementsystem

Ausbrechstation

Ausbrechwerkzeug

Ausschießen

Author

B

Back

BackCoatings

Barcode

BarcodeCompParams

BarcodeProductionParams

BarcodeReproParams

Bedruckstoff

BillingCode

BinderySignature

BinderySignatureType

Bitmap

Bitmaps

BlackColorLimit

BlackDensityLimit

BlackWidth

BlankDimensionsX

BlankDimensionsY

Blanker

Blitzer

Blockname

BlockTrf

Bogen-Layout

Bogengröße

Bogenoffset

BoxFoldActions

BoxFolding

BoxFoldingParams

BoxFoldingType

Brand

BusinessObject

Bytemap

C

Cancellation

Capabilities

Chargeable

CheckJDFServer

CIP3

CIP4

Class

Cleanup

ClipBox

Collecting

CollectingParams

ColorantControl

ColorIntent

ColorManagementSystem

ColorPool

ColorSpaceConversion

ColorSpaceConversionOp 1

ColorSpaceConversionParams

ColorType

Combined

CombinedProcessIndex

Component

ComponentLink

ComponentType

Computer Supported Coopera-

tive Work

Condition

Confirmation

Contact

Content-Daten

ContentObject

ContoneCalibration

Controller

ConventionalPrinting

ConventionalPrintingParams

CorrugatedBoard

CostType

CounterDie

Crossreference-Tabelle

Current Transformation Matrix

CustomerID

CustomerInfo

CustomerJobName

CustomerMessage

CustomerOrderID

CustomerProjectID

Cut

CutBlock

CutDie

CutPath

Cutting

CuttingParams

cXML (Commerce Extensible

Markup Language)

D

Data Type

Datenbankschnittstelle

DBDocTemplateLayout

DBMergeParams

DBRules

DBSchema

DBSelection

DBTemplateMerge

DDESCutType

Deklaration

DeliveryIntent

DescriptiveName

Device

DeviceCababilities

Device Capabilities

DeviceColorantOrder

DeviceInfo

DeviceStatus

Die

DieLayout

DieLayoutProduction

DieLayoutProductionParams

DieMaking

Digitaldruck

Digitaldrucker im Büro

Digitaloffset

DigitalPrinting

Dimension

Display-Liste

Disposition

Document Type Definition

Down

Drahtklammern

Dreiseitenschneider

DropIntent

DropItemIntent

Index

213Index

Druckbedingungen

Druckfarben

Druckform

Druckfreigabe

Druckparameter

Druckprotokoll

DTP-Punkt

Dublin Core Schema

E

Einrichten

Element

Embossing

Employee

EncodingDetails

End-Tag

Enterprise Resource Planing

Erweiterbarkeit

Erzeuger-Verbraucher-Modell

Etikett

EXIF (Extended Interchange For-

mat)

EXIF Schema for EXIF-specific

Properties

ExposedMedia

Extreme-RIP

F

Faltschachtelklebemaschine

Faltschachtelkonstruktion

Falzartenkatalog

Falzmarken

Falzmaschine

Falzposition

Falzreihenfolgen

Falzschema

Farbe

Farbmanagement

Farbnamen

Farbprofile

Farbraumtransformation

Farbreihenfolge

Farbtiefe

Farbzonenvoreinstellung

FileSpec 1

First In - First Out

FixJDF

Flexodruck

Flussdiagramme

Flute

FM-Raster

Foil

Fold

FoldIndex

FoldingParams

Folie

FontPolicy

FormatConversion

Formproof

Fortdruck

Freigabe zum Druck

Front

FrontCoatings

FrontPages

G

Gamut Mapping

Gegenstanzform

Gegenzurichtung

Gerät

GlueLine

Grade

GrainDirection

GrayBox

Greiferrand

Grid

Groupware

Grundrüsten

H

Halbtonbild

HoldQueue

HoldQueueEntry

Hotfolder

HTTP-Sniffer

Hybrid-Workflow

I

ICS (Interoperability Confor-

mance Specifications)

ICSVersions

ID

Idle

IgnoreEmbeddedICC

IgnorePDLImposition

ImagePhotographic

ImageSetting

ImageToImageTrapping

ImageToObjectTrapping

ImageTrapPlacement

Imposition

ImpositionPreparation

ImpositionProofing

ImpositionRIPing

Ink

InkZoneCalculationParams

InkZoneProfile

Inline-Finishing

Inline-Weiterverarbeitung

Innnendienstmitarbeiter

Integrated Digital Printing (IDF)

ICS

integrierte Drucksystene

International Press Telecommuni-

cation Council

Interpretation

Interpreting

InterpretingParams

Interprozesskommunikation

Invoice

J

JDF (Job Definition Format)

JDF Editor

JMF (Job Messaging Format)

JMF-Anfrage

JMF-Antwort

JMF-Bestätigung

JMF-Kommando

JMF-Mitteilung

JMF-Registrierung

JMF-Singal

JobID

Job Messaging Format

JobPhase

Jobticket-Prozessoren

Jobtickets

jRef

K

Kalkulationsprogramme 1

Knoten

kombinierter Prozess

Kompetenzverlagerung

Kontrollmarken

L

Label

Lauflängenkompression

Laufrichtung

Layout

Layout-Ressource

LayoutElement

LayoutElementProduction

LayoutElementProductionParams

LayoutIntent

Leimspur

Leimwerk

Level

Linearisierungskurve

Linearisierungskurven

M

Management Information System

Manager

MarkObject

MarkObjekt

Maschine

Media

MediaIntent

214 Index

MediaType

Merge

Metadaten

MIME

MISDetails

MIS ICS

MIS to PrePress ICS

Montage

MountingTape

N

Nachfalz

Nachrichtenprotokoll

Namensraum

NeutralDensity

NewSpawnID

node

NodeInfo

Normalisieren

NumberSpan

NumberUp

Nutzen

Nutzentrennwerkzeug

O

Office Digital Printing ICS

Operation

OrderStatusRequest

OrderStatusResponse

Original

P

Papierbeginn

Papierdicke

Papiergewicht

Papierklasse

Parser

PartIDKeys

partitionierte Ressourcen

PDF/VT

Persistent Channel

Personalisierung

Pipe

PipePull

PipePush

PJTF (Portable Jobticket Format)

Planschneider

Plantafel

PlateMaking

PlateSetting

PlateTechnology

Plattenherstellung

PositionX

PositionY

PPF

PPML

PPS

Präfix

Prägen

Preflight

PrePressPreparation

Preview

PrintCondition

Print Engine

Print Production Format

PrintTalk

Produktionsplanung- und Steue-

rungssystem

Produktknoten

Produzent-Konsument-Modell

Proof

ProofApprovalRequest

ProofApprovalResponse

Prozesse-Ressourcen-Prinzip

Prozessgruppenknoten

Prozesskalibrierungskurven

Prozessknoten

PSToPDFConversion

PurchaseOrder

Q

Quantity

Quotation

R

Rasterart

Rasterfrequenz

Rasterproof

Rastertyp

RBA (Rules-Based-Automation)

RDF (Resource Description Fra-

mework)

Refelement

refID

Refusal

RelativeBox

Reliefhöhe

ReliefThickness

Rendering

RenderingIntent

RenderingParams

Request For Quote

ResourceAudit

ResourceLinkPool

Resource Message

ResourcePool

ReturnJob

RFQ

RGBGray2Black

RGBGray2BlackTreshhold

RIPing

Rippen

Rohbogen

Rollenoffset

rRef

rRefsROCopied

Rückstichheftaggregat

RunList

Running

S

Sachbearbeiter

Sammelhefter

Schnellschneider

Screening

ScreeningParams

Selective Binding

Semantisches Web

Separation

Setup

Shape

ShapeCutting

ShapeDef

ShapeDefProduction

ShapeDefProductionParams

Sheet

SheetName

Side

Siebdruck

Signature

SignatureCell

SignatureName

Sleeve

Sniffer

SOAP

SOAP (Simple Object Access

Protocol)

Softproof

Sollbogenanzahl

SourceCS

SourceObject

Spawn

SpawnID

Spezifikation

Stammdaten

Standardisierung

Standbogen

Stanzen

Stanzform

Stanzformbau

Stanzkontur

Start-Tag

Status

Step&Repeat

StepLimit

Stitching

StitchingParams

215Index

Stopped

StopPersistentChannel

Strichbreitenkompensationen

String

StripCellParams

Stripper

Stripping

StrippingParams

Strukturdesign

SubmitQueueEntry

Subscription

SurfaceContentsBox

T

Thickness

Tiefdruck

TIFF-B

TimeStamp

Tonwertanpassungskurven

Tonwertkompensationskurven

Tonwertzunahme

Tool

TransferCurvePool

TransferFunctionControl

Transferkurve

Transferkurven

Transformationsmatrix

Trapping

TrappingDetails

TrappingOrder

TrappingParams

TrapWidth

trennen

Trimbox

TrimCTM

Trimmer

Trimming

TrimmingParams

TrimSize

Type

Types

U

Unknown

URI (Universal Resource Iden-

tifier)

URL (Uniform Resource Locator)

V

Variable-Data Printing

Varnishing

Verdrängung

Vernutzung

Verpackungsdruck

Version

Visual Basic for Applications

Vorbrecher

Vorfalz

W

WaitForApproval

Web2Print

WebInlineFinishing

Webservice

Weight

Weiterverarbeitung

Welle

Wellpappe

WfMC (Workflow Management

Coalition)

WorkAndTurn

Worker

Workflow

Workflow-Engines

Workflow-Management-System

Workflow Management

WorkStyle

WorkType

Wurzelelement

X

XML (Extensible Markup Langu-

age)

XML-Gültigkeit

XML-Schema

XML-Wohlgeformtheit

xmlns

XMP (Extensible Metadata Plat-

form)

XMP Basic Schema

XMP Paged-Text Schema

XMP Rights Management

Schema

XYPairSpan

Z

ZoneSettingX

ZoneSettingY

zusammenführen

Zuschnitte

Zustandsübergangsdiagrammen

Zylindergravur

About the Authors

Professor Dr. Thomas Hoffmann-Walbeck: Mathematician, Software de-

veloper, project manager. Professor since 1998 at the University of the Media

in the Printing and Media Technology degree program. Teaching areas: pre-

press, applied computer sciences, JDF networking.

Sebastian Riegel: Engineering Graduate. Graduate degree at the University

of the Media in Stuttgart. Research assistant since 2003 in the Printing and

Media Technology degree program, technically responsible for the CtP labo-

ratory and for the JDF integration of the university.

About Printing Industries of America

Printing Industries of America, along with its affiliates, delivers products and services that

enhance the growth, efficiency, and profitability of its members and the industry through

advocacy, education, research, and technical information.

Printing Industries of America developed from the 1999 merger of the Graphic Arts Techni-

cal Foundation (GATF), founded in 1924, and Printing Industries of America (PIA), founded

in 1887. This consolidation brought together two powerful partners: the world’s largest

graphic arts trade association representing an industry with more than 1 million employ-

ees and $156 billion in sales and a nonprofit, technical, scientific, and educational organi-

zation dedicated to the advancement of the graphic communications industries worldwide.

Printing Industries of America’s staff of researchers, educators, and technical specialists helps

members in more than 80 countries maintain their competitive edge by increasing produc-

tivity, print quality, process control, and environmental compliance and by implementing

new techniques and technologies.

In addition to striving to advance a global graphic communications community through

conferences, Internet symposia, workshops, consulting, technical support, laboratory ser-

vices, and publications, Printing Industries of America promotes programs, services, and an

environment that helps its members operate profitably.

Many of Printing Industries’ members are commercial printers, allied graphic arts firms such

as electronic imaging companies, equipment manufacturers, and suppliers. Its special indus-

try groups, sections, and councils were developed to serve the unique needs of specific seg-

ments of the print and graphic communications industries and provide members with cur-

rent information on their specific segment, helping them to meet the business challenges

of a constantly changing environment. These groups focus on web offset printing, label

printing, binding, financial executives, sales and marketing executives, and digital printing.

Printing Industries Press publishes books on nearly every aspect of the field; training curri-

cula; audiovisuals and digital media; and research and technology reports. It also publishes

Printing Industries of America: The Magazine, providing articles on industry technologies,

trends, business management practices, economics, benchmarks, forecasts, legislative and

regulatory affairs, human and industrial relations issues, sales, marketing, customer service

techniques, and management resources. The magazine represents the consolidation of

GATFWorld and Management Portfolio, formerly bi-monthly publications of the association.

For more information about Printing Industries of America, special industry groups, sections,

products, and services, visit www.printing.org.

Canadian Printing Industries Association

Ottawa, Ontario

www.cpia-aci.ca

Graphic Arts Association

Trevose, PA

www.gaa1900.com

Pacific Printing and Imaging Association

Portland, OR

www.ppiassociation.org

Printing & Graphics Association MidAtlantic

Columbia, MD

www.pgama.com

Printing & Imaging /Association of MidAmerica

Dallas, TX

www.piamidam.org

Printing & Imaging Association of Georgia

Smyrna, GA

www.piag.org

Printing Association of Florida

Orlando, FL

www.pafgraf.org

Printing Industries Alliance

Amherst, NY

www.pialliance.org

Printing Industries of Arizona/New Mexico

Phoenix, AZ

www.piaz.org

Printing Industries Association of San Diego

San Diego, CA

www.piasd.org

Printing Industries Association Inc.

of Southern California

Los Angeles, CA

www.piasc.org

Printing Industries of Ohio • N. Kentucky

Westerville, OH

www.pianko.org

Printing Industries of the Gulf Coast

Houston, TX

www.pigc.com

Printing Industries of Michigan, Inc.

Southfield, MI

www.print.org

PINE

Southborough, MA

www.pine.org

Visual Media Alliance

San Francisco, CA

www.visualmediaalliance.org

Printing Industries of St. Louis, Inc.

Maryland Heights, MO

www.pistl.org

Printing Industries of Utah

West Jordan, UT

www.piofutah.com

Printing Industries of Virginia

Ashland, VA

www.piva.com

Printing Industries of Wisconsin

Pewaukee, WI

www.piw.org

Printing Industry of Illinois/Indiana Association

Chicago, IL

www.pii.org

Printing Industry Midwest

Roseville, MN

www.pimn.org

The Printing Industry of the Carolinas, Inc.

Charlotte, NC

www.picanet.org

Printing Industry Association of the South

Nashville, TN

www.pias.org

Printing Industries of America Affiliates

Selected Titles from Printing Industries Press

	Cover Englisch-6
	JDF Workflow Content

